МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ
ІМЕНІ ТАРАСА ШЕВЧЕНКА

На правах рукопису

КУЛАЙ ІГОР ВОЛОДИМИРОВИЧ

УДК 54.057::547.99+541.64

СИНТЕЗ ТА РЕАКЦІЙНА ЗДАТНІСТЬ НОВИХ
ГЕТЕРОЕЛЕМЕНТВМІСНИХ РЕГУЛЯТОРІВ ДЛЯ
КОНТРОЛЬОВАНОЇ РАДИКАЛЬНОЇ ПОЛІМЕРИЗАЦІЇ

02.00.03 – органічна хімія

Дисертація на здобуття наукового ступеня
кандидата хімічних наук

Наукові керівники:

ВОЙТЕНКО ЗОЯ ВСЕВОЛОДІВНА
dоктор хімічних наук, професор

ДЕСТАРАК МАТІАС
gабілітований доктор, професор
(Університет Поля Сабатьє, Тулуза, Франція)

Київ-2016
ЗМІСТ

СПИСОК УМОВНИХ СКОРОЧЕНЬ .. 5
ВСТУП .. 7
РОЗДІЛ 1 РЕГУЛЯТОРІ ДЛЯ RAFT ПОЛІМЕРИЗАЦІЇ
(Огляд літератури) .. 15
 1.1. Загальне уявлення про RAFT полімеризацію 15
 1.2. Методи синтезу основних класів RAFT агентів 22
 1.2.1. Алкілювання карбодітоат-аніонів .. 22
 1.2.2. Реакції тіоацилювання .. 27
 1.2.3. Тіонування карбонових кислот та їх естерів 29
 1.2.4. Кетоформна реакція .. 30
 1.2.5. Лужна трансестерифікація .. 32
 1.2.6. Приєднання дитіокарбонових кислот до алкенів 32
 1.2.7. Радикальне заміщення в біс(тіоацил)дисульфідах 34
 1.2.8. Радикальна трансестерифікація ... 35
 1.3. Методи синтезу мінорних класів RAFT агентів 35
 1.3.1. Флуорокарбодітоати та сульфонілметандітоати 35
 1.3.2. Селеновмісні RAFT агенти ... 36
 1.3.3. Фосфорорганічні RAFT агенти ... 39
 1.4. Стананкарбодітоати та методи їх синтезу 40
 1.5. Висновки до розділу 1 ... 41

РОЗДІЛ 2 СИНТЕЗИ ТА ХІМІЧНІ ВЛАСТИВОСТІ НОВИХ RAFT
АГЕНТІВ .. 42
 2.1. Синтез фосфорилметандітоатів .. 42
 2.2. Синтези триарилстананкарбодітоатів .. 47
 2.2.1. Алкілювання триарилстананкарбодітоатів натрію 47
 2.2.2. Спроба синтезу біс(триарилстанілкарбонотіоїл)дисульфідів .. 52
 2.2.3. Спроба синтезу (три-\textit{n}-толілстаніл)трифенілстананкарбодітоату 56
2.2.4. Взаємодія (трифенілстаніл)трифенілстананкарбодитіоату з алкілбромідами ... 59
2.3. Термічна стабільність триарилстананкарбодитіоатів 61
 2.3.1. Вивчення кінетики термічної деструкції 62
 2.3.1. Ідентифікація продуктів термічної деструкції 67
 2.3.3. Обговорення механізму термічної деструкції 72
2.4. Термічна стабільність фосфорилметандитіоатів 74
2.5. Висновки до розділу 2 .. 75

РОЗДІЛ 3 ЕФЕКТИВНІСТЬ НОВИХ RAFT АГЕНТІВ У РАДИКАЛЬНІЙ ПОЛІМЕРИЗАЦІЇ ... 77
 3.1. Полімеризації за участю фосфорилметандитіоатів 78
 3.1.1. Полімеризації в класичних умовах 78
 3.1.2. Полімеризації з напів-онлайн 1H та 31P ЯМР моніторингом 83
 3.1.2.1. Полімеризації стирену ... 84
 3.1.2.2. Полімеризації бутилакрилату 91
 3.1.2.3. Блок-кополімеризація St та VA в присутності сполуки 2.4 c 99
 3.2. Полімеризації за участю трифенілстананкарбодитіоатів 103
 3.2.1. Полімеризації в класичних умовах 103
 3.2.2. Полімеризації з варіацією температури 109
 3.2.3. Полімеризації з напів-онлайн 1H та 119Sn ЯМР моніторингом 112
 3.2.4. Полімеризації за участю продуктів термічного розкладу 116
 3.2.5. Визначення констант передачі ланцюга 119
3.3. Висновки до розділу 3 .. 122

РОЗДІЛ 4 СИНТЕЗИ ФЛУОРЕСЦЕНТНИХ RAFT АГЕНТІВ 124
 4.1. Основні положення .. 124
 4.2. Синтез флуроресцентних RAFT агентів 125
 4.3. Синтез 3-((4-амінофеніл)-7-(діетиламіно)-2-етокси-2H-бензо[е][1,2]оксафосфінін-2-оксиду .. 129
 4.4. Синтез флуроресцентних полімерів .. 131
 4.5. Вивчення флуроресцентних властивостей синтезованих полімерів 136
4.6. Висновки до розділу 4 ... 139

РОЗДІЛ 5 ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА... 140

5.1. Матеріали та устаткування.. 140
5.2. Синтез цільових сполук... 143
 5.2.1. Загальна методика синтезу сполук 2.4 a-f................................. 143
 5.2.2. Загальна методика синтезу сполук 2.7 i-j................................. 146
 5.2.3. Спроба синетзу біс(триарилстанілкарбонотіоїл)дисульфідів 151
 5.2.4. ((Три-n-толілстанілсульфаніл)(трифенілстаніл)метил)трифеніл-
 стананкарбодитіоат 2.10... 151
 5.2.5. (Бензилсульфаніл)трифенілстанан 2.13..................................... 152
 5.2.6. Біс(трифенілстаніл)сульфід 2.14... 152
 5.2.7. 3-(4-Амінофеніл)-7-(діетиламіно)-2H-хромен-2-он 4.5 153
 5.2.8. 2-Бромо-N-(4-(7-(діетиламіно)-2-оксо-
 2H-хромен-3-іл)феніл)пропанамід 4.6 154
 5.2.9. 1-((4-7-(Діетиламіно)-2-оксо-2H-хромен-3-іл)феніл)аміно)-1-
 оксопропан-2-ил)-O-етилкарбонодитіоат 4.7............................ 155
 5.2.10. 1-((4-(7-(Діетиламіно)-2-оксо-2H-хромен-3-іл)феніл)аміно)-1-
 оксопропан-2-іл)(ди(піперидин-1-іл)фосфорил)метандитіоат 4.8 156
 5.2.11. 7-(Діетиламіно)-2-етокси-3-(4-нітроfenіл)-
 2H-бензо[e][1,2]оксафосфінін-2-оксид 4.11................................. 157
 5.2.12. 3-(4-Аміноfenіл)-7-(діетиламіно)-2-етокси-
 2H-бензо[e][1,2]оксафосфінін-2-оксид 4.12................................. 158

ВИСНОВКИ .. 159

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ .. 160

ДОДАТОК .. 181
<table>
<thead>
<tr>
<th>СПИСОК УМОВНИХ СКОРОЧЕНЬ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BA/PBA</td>
<td>бутилакрилат/полібутилакрилат</td>
</tr>
<tr>
<td>CI</td>
<td>хімічна іонізація</td>
</tr>
<tr>
<td>CTA</td>
<td>агент передачі ланцюга</td>
</tr>
<tr>
<td>C_{tr}</td>
<td>константа передачі ланцюга</td>
</tr>
<tr>
<td>$D = M_w/M_n$</td>
<td>дисперсність полімеру</td>
</tr>
<tr>
<td>ESI</td>
<td>електроспрей-іонізація</td>
</tr>
<tr>
<td>DMAA/PDMAA</td>
<td>N,N-диметилакриламід/полі(N,N-диметилакриламід)</td>
</tr>
<tr>
<td>DP_n</td>
<td>середньочисловий ступінь полімеризації</td>
</tr>
<tr>
<td>EHA/PEHA</td>
<td>2-етилгексилакрилат/полі(2-етилгексилакрилат)</td>
</tr>
<tr>
<td>LR</td>
<td>реагент Лауссона</td>
</tr>
<tr>
<td>MA/PMA</td>
<td>метилакрилат/поліметилакрилат</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>матрично-активована лазерна десорбція/іонізація з часо-пролітним детектуванням</td>
</tr>
<tr>
<td>M_n</td>
<td>середньочислова молярна маса полімеру</td>
</tr>
<tr>
<td>$M_{n \text{ teor}}$</td>
<td>теоретично розрахована молярна маса полімеру</td>
</tr>
<tr>
<td>NIPAM/PNIPAM</td>
<td>N-ізопропілакриламід/полі(N-ізопропілакриламід)</td>
</tr>
<tr>
<td>RAFT</td>
<td>передача ланцюга зворотним приєднанням та фрагментацією</td>
</tr>
<tr>
<td>St/PSt</td>
<td>стирен/полістирен</td>
</tr>
<tr>
<td>t</td>
<td>час</td>
</tr>
<tr>
<td>TCDI</td>
<td>тіокарбонілдиімідазол</td>
</tr>
<tr>
<td>TOA/PTOA</td>
<td>N-тпрем-октилакриламід/полі(N-тпрем-октилакриламід)</td>
</tr>
<tr>
<td>Tol</td>
<td>n-толіл</td>
</tr>
<tr>
<td>x_{ω}</td>
<td>частка активних дитіоформіат ω-кінцевих груп полімеру</td>
</tr>
<tr>
<td>AIBN</td>
<td>азобісізобутиронітрил</td>
</tr>
<tr>
<td>ГПХ</td>
<td>гель-проникаюча хроматографія</td>
</tr>
<tr>
<td>д.</td>
<td>дублет</td>
</tr>
<tr>
<td>д.д.</td>
<td>дублет дублетів</td>
</tr>
</tbody>
</table>
д.т. дублет триплетів
ДМСО диметилсульфоксид
ДМФА N,N-диметилформамід
ДХМ дихлорометан
ІЧ інфрачервоний
к. квартет
к.д. квартет дублетів
конв. конверсія
М мономер
м. мультиплет
ММР молекулярно-масовий розподіл
МСВР мас-спектрометрія високої роздільної здатності
п.т. псевдотриплет
розш. розширенний сигнал
РСД рентгеноструктурні дослідження
с. синглет
t. триплет
ТБАБ тетра-н-бутиламонію бромід
ТГФ тетрагідрофуран
т.д. триплет дублетів
у.о. умовна одиниця
ЯМР ядерний магнітний резонанс
ВСТУП

Сучасному етапу розвитку науки притаманні перехід від фундаментального до прикладного спрямування, а також інтеграційні процеси з дослідженнями на перетині декількох наук. В якості прикладу варто навести симбіоз органічної та біологічної хімії в емпіричному пошуку нових біологічно активних речовин шляхом синтезу бібліотек органічних сполук та тестування їхньої активності. З просуванням ідей сталого розвитку все більшого значення набуває використання підходів органічного синтезу не лише для пошуку нових лікарських засобів, але й у розробці нових матеріалів.

Один із сучасних методів виробництва високомолекулярних сполук із запрограмованими властивостями — радикальна полімеризація з передачею ланцюга зворотним приєднанням та фрагментацією, або скорочено RAFT полімеризація. Вона дозволяє синтезувати полімери з низькою дисперсністю, а також контролюваною молекулярною масою та архітектурою для більшості вінілових мономерів зі збереженням універсальності, простоти та дешевизни класичної радикальної полімеризації. Ключовий елемент цієї технології — агенти передачі ланцюга на основі α–заміщених дитіоформіатів загальної формули \(Z(C=S)SR \), об’єднані під загальною назвою “RAFT агенти”.

Ефективність RAFT агентів визначається реакційною здатністю подвійного \(C=S \) та лабільністю простого \(S-R \) зв’язку. Отже, для полімеризації певного мономеру важливо обрати прийнятні \(R \) та \(Z \) групи, щоб відрегулювати реакційну здатність тіокарбонільної групи та стабільність проміжних радикалів. Залежно від природи \(Z \) групи виділяють чотири основні класи RAFT агентів: дитіоестери, дитіокарбамати, ксантати та тритіокарбонати. На сьогодні описано декілька сотень представників цих сполук, а їхня ефективність систематично вивчена, причому конкретний RAFT агент може використовуватись лише для полімеризації вузького ряду мономерів.

У зв’язку з цим, актуальності набув пошук “універсального” RAFT агенту, який дозволить зняти ці обмеження та контролювати полімеризацію більшості
мономерів із однаковою ефективністю. Для цього використовують емпіричний метод з класичним органічним синтезом нових RAFT агентів та випробуванням їхньої ефективності в радикальній полімеризації.

Відносно новий напрямок цього пошуку — введення різноманітних гетероелементів, таких як Флуор, Селен, Фосфор або Станум до α–позиції дитіоформіатів. Введення атомів з ядрами, які мають нецілий спін, відкриває додаткові обрії для дослідження кінетики та механізму полімеризації, а також характеристизації отриманих полімерів за допомогою методів гетероядерного ЯМР.

Актуальність теми. Синтез та дослідження взаємозв’язків структура-активність для фосфорилметандитіоатів та триарилстананкарбодитіоатів є актуальною проблемою, вирішення якої потребує систематичної структурної варіації (органічний синтез різноманітних ключових модельних сполук) та послідовного дослідження рівня їх ефективності в контролюваній радикальній полімеризації.

Зв'язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконана на кафедрі органічної хімії хімічного факультету Київського національного університету імені Тараса Шевченка в рамках наукової теми кафедри “Нові гетероциклічні сполуки – ефективні джерела біологічно-активних речовин, флуоресцентних зондів, модифікаторів супрамолекулярних об’єктів” (бюджетна тема № 11БФ037-02), у лабораторіях IMRCP, UMR CNRS 5623 та LHFA, UMR CNRS 5069 Університету Поля Сабатьє (м. Тулуза, Франція) в рамках аспірантури зі спільним керівництвом на основі діючої угоди про міжнародне співробітництво, а також відповідних документів про спільну аспірантуру.

Мета і завдання дослідження. Дисертаційна робота присвячена розробці ефективних методів синтезу нових фосфорилметандитіоатів та триарилстананкарбодитіоатів із активністю в контролі RAFT полімеризації. Таким чином, метою дослідження є структурний пошук та синтез нових гетероелементвмісних регуляторів для RAFT полімеризації.
Для досягнення поставленої мети необхідно було вирішити наступні завдання:

- Оптимізувати методи синтезу цільових сполук;
- Отримати ряд сполук з диверсифікацією замісників;
- Встановити будову отриманих сполук;
- Визначити їх ефективність у RAFT полімеризації.

Об’єкти дослідження — fosфорилметандитіоати; триарилстананкарбодитіоати; флуоресценція; RAFT полімеризація.

Предмет дослідження — дизайн структури та експериментальне випробування нових гетероелементвмісних регуляторів для RAFT полімеризації.

Методи дослідження — органічний синтез, радикальна полімеризація, \(^{1}\mathrm{H}\), \(^{13}\mathrm{C}\), \(^{19}\mathrm{F}\), \(^{31}\mathrm{P}\), \(^{119}\mathrm{Sn}\) ЯМР та ІЧ спектроскопія, мас-спектрометрія, спектрофотометрія, флуориметрія, гель-проникаюча хроматографія та рентгеноструктурні дослідження.

Наукова новизна одержаних результатів. Синтезовано 13 нових фосфорорганічних та стануморганічних RAFT агентів. Вдосконалено методику синтезу триарилстананкарбодитіоатів, що дозволило скоротити тривалість реакції та підвищити вихід цільових продуктів.

Виявлено нові приклади \(\mathrm{S}_{\mathrm{N}}\) заміщення в трансформаціях стануморганічних сполук, а саме в фрагментації біс(триарилстанілкарбонотіоїл)дисульфідів та димеризації (три-\(n\)-толілстаніл)трифенілстананкарбодитіоату.

Досліджено термічну стабільність алкілтриарилстананкарбодитіоатів. Визначені кінетичні параметри реакцій термічного розкладу, ідентифіковані основні продукти, а також висунута гіпотеза про можливий механізм цього перетворення.

Вперше використано триарилстананкарбодитіоати в ролі RAFT агентів. Підтверджено ефективність синтезованих fosфорилметандитіоатів та триарилстананкарбодитіоатів за допомогою модельних RAFT полімеризацій.

Розроблено експериментальні підходи для дослідження термічної стабільності та проведення RAFT полімеризацій в ЯМР ампулах із напів-онлайн
Вперше синтезовано функціональний fosфорорганічний RAFT агент із кумариновим флуорофором та продемонстровано його ефективність у радикальній полімеризації. Вивчення флуоресцентних властивостей дозволило виявити лінійну кореляцію між інтенсивністю флуоресценції та ступенем полімеризації синтезованих полімерів, яка пояснюється гасінням флуоресценції сірковмісною ω-кінцевою групою.

Структури шістнадцяти сполук, представлених в дисертації, встановлені за допомогою РСД.

Практичне значення одержаних результатів. Синтезовано нові ефективні гетероелементвмісні RAFT агенти.

Ідентифіковано дві системи, які можна порекомендувати для використання в рутинних RAFT полімеризаціях: (дициклогексилfosфорил)метандііоат та (ди(піперидин-1-іл)fosфорил)метандііоат.

Встановлено межі термічної стабільності триарилстананкарбодііоатів.

Одержано новий конкурентоспроможний флуоресцентний RAFT агент.

Запропоновано критерії підтвердження будови синтезованих сполук за допомогою ІЧ та ЯМР спектроскопії, а також МСВР.

Особистий внесок здобувача. Систематизацію літературних даних, основний обсяг експериментальної роботи, узагальнення та оформлення всіх отриманих результатів, аналіз даних спектральних досліджень та встановлення будови одержаних сполук було проведено здобувачем особисто. Постановка завдання дослідження та обговорення результатів проводились з науковими керівниками д.х.н., проф. З. В. Войтенко та Dr. habil., проф. М. Дестараком. У вирішенні деяких проблем, що виникали під час проведення синтезів та ідентифікації продуктів реакцій, а також при аналізі результатів полімеризацій брали участь доктори С. Мазьєр, С. Гаррісон та О. Кутольє (IMRCP, Університет Поля Сабатьє). Рентгеноструктурні дослідження здійснено у
співпраці з доктором С. Маллет-Ладейра та Н. Сафон (ICT CNRS, Університет Поля Сабатьє). Спектральні дослідження методом ЯМР виконані у співробітництві з К. Топан (Service commun de RMN, Університет Поля Сабатьє).

Публікації. За темою дисертації опубліковано 6 статей у міжнародних фахових періодичних виданнях, 2 статті у наукових фахових виданнях України та 6 тез доповідей на міжнародних наукових конференціях.

збір літературних даних, проведення експериментальних досліджень, встановлення будови отриманих сполук, написання статті).

13. Kulai I., Brusylovets O., Voitenko Z., Mazières S., Destarac M. Triarylstannanecarbodithioates as potential RAFT agents. / Materials of reports and

Структура та обсяг роботи. Дисертація викладена на 301 сторінці та складається зі вступу, п'яти розділів, висновків, список використаних джерел та 145 додатків. Обсяг основного тексту дисертації складає 151 сторінку друкованого тексту. Робота ілюстрована 124 рисунками, 61 схемою та 28 таблицями. Список використаних джерел містить 168 найменувань латиною. Первий розділ є оглядом літератури, що присвячений загальному огляду RAFT полімеризації та синтезу її регуляторів. У другому розділі описано синтез нових фосфор- та стануморганічних RAFT агентів, а також дослідження їх термічної стабільності. Третій розділ присвячений вивченню ефективності синтезованих сполук в контролі RAFT полімеризації. У четвертому розділі описано синтез флуоресцентного RAFT агенту та полімерів на його основі. П'ятий розділ є експериментальною частиною, де наведено методики синтезу нових сполук, а також їх фізико-хімічні та спектральні характеристики.
РОЗДІЛ 1
РЕГУЛЯТОРИ ДЛЯ RAFT ПОЛІМЕРИЗАЦІЇ
(Огляд літератури)

З часу першої публікації щодо радикальної полімеризації з передачею ланцюга зворотним присаджуванням та фрагментацією (Reversible Addition-Fragmentation chain Transfer, RAFT, англ.) минуло сімнадцять років [1–3]. За цей час сформувалась окрема галузь академічних та індустріальних досліджень, було опубліковано більше 2000 наукових статей та близько 200 патентів за цією тематикою. Вона здійснила революцію в синтезі полімерів та породила нові матеріали, які знайшли вжиток у багатьох галузях господарства, починаючи з адгезивів та гідравлічних рідин і закінчуючи косметичними засобами, біосенсорами та лікарськими засобами. Тим не менше, всі ці успіхи опираються на відповідні досягнення в органічному синтезі.

1.1. Загальне уявлення про RAFT полімеризацію

На відміну від нітроксид-контрольованої полімеризації (Nitroxide-Mediated polymerization, NMP, англ.) [12] та радикальної полімеризації з переносом атомів (Atom Transfer Radical Polymerization, ATRP, англ.) [13], заснованих на зворотній рекомбінації макрорадикалів, RAFT ґрунтується на принципі дегенеративної передачі ланцюга [14]. Для досягнення рівноваги деактивації-реактивації використовуються агенти передачі ланцюга (Chain Transfer Agent, CTA, англ.) на основі α-заміщених дитіоформіатів [15], які зазвичай називають просто RAFT
агентами. Оскільки радикальні центри не виникають і не зникають спонтанно протягом процесу деактивації-реактивації, доводиться використовувати зовнішнє джерело вільних радикалів як і в класичній радикальній полімеризації.

Загальнозвизнаний механізм цього процесу наводиться на схемі 1.1. В цілому він аналогічний механізму класичної радикальної полімеризації, за винятком додаткових рівноваг за участю RAFT агентів. Перша стадія — ініціювання полімеризації мономеру радикалами утвореними з ініціатора. Для цієї мети може використовуватись термоініціювання (розпад азосполук, пероксидів, або молекул мономеру при температурах вище 100 °C), окисно-відновні реакції (наприклад, у системах пероксид + третинний амін) та різнomanітні фотоініціатори. Після цього утворений макрорадикал P_n• приєднується за подвійним зв’язком C=S RAFT агенту 1.1 з утворенням нестабільного радикального інтермедіату 1.2, який може розпадатися двома шляхами — на вихідні реагенти або на макро-RAFT агент 1.3 і новий радикал R’• 1.4. Цю рівновагу прийнято називати ініціалізацією RAFT агенту. Радикал R’ потім може реагувати з будь-яким із подвійних зв’язків C=S або реініціювати полімеризацію з утворенням нових макрорадикалів P_m•. Після повної ініціалізації вихідного RAFT агенту, встановлюється так звана “головна рівновага” між макрорадикалами P_n•, P_m• та сплячими полімерними ланцюгами 1.3 та 1.6.

Швидка ініціалізація та динамічна рівновага між активними макрорадикалами та сплячими полімерними ланцюгами створюють однакові умови для росту всіх полімерних ланцюгів у реакційній суміші і, як результат, дозволяють отримувати полімери з дуже вузьким молекулярно-масовим розподілом (MMP). Термінація внаслідок рекомбінації неминуча, причому кількість мертвих ланцюгів визначається у першу чергу концентрацією вільних радикалів. Але, оскільки кількість сплячих полімерних ланцюгів в складі макро-RAFT агенту значно перевищує кількість макрорадикалів утворених з ініціатора, більшість полімерних ланцюгів залишаються “живими” після закінчення полімеризації і можуть бути виділені в стабільному стані з можливістю подальшої модифікації кінцевих груп або нарошення ланцюга.
Інакше кажучи, характеристики “живої” полімеризації досягаються, якщо цільова молярна маса полімеру набагато нижча, аніж та, яку можна отримати в умовах класичної радикальної полімеризації (без використання RAFT агенту), і кількість макромолекул з дитіоформіат ω–кінцевими групами значно перевищує кількість продуктів термінації. Задля досягнення цієї мети використовуються незначні концентрації ініціатора в порівнянні з регулятором (1:10 – 1:5).

Наприклад, при використанні АІБН (65 °C, τ₁/₂ = 10 год, коефіцієнт ефективності ініціатора 0,5), залежно від тривалості полімеризації утворюються такі кількості “живих” ланцюгів, як наведено в таблиці 1.1.

Таблиця 1.1

<table>
<thead>
<tr>
<th>[CTA]:[АІБН]</th>
<th>Час, год</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1:1</td>
<td>93,3 %</td>
</tr>
<tr>
<td>2:1</td>
<td>96,7 %</td>
</tr>
<tr>
<td>5:1</td>
<td>98,7 %</td>
</tr>
<tr>
<td>10:1</td>
<td>99,3 %</td>
</tr>
</tbody>
</table>
Таким чином, максимальна ефективності можна досягнути при мінімальній тривалості полімеризації та кількості ініціатора, оскільки збільшення цих параметрів неминуче збільшує внесок подій термінації.

Схема 1.2

RAFT полімеризацію здійснюють в умовах класичної радикальної полімеризації, за винятком введення до реакційної суміші CTA. Таким чином, вона володіє всіма її перевагами, а саме: велика різноманітність прийнятних мономерів (метакрилати, акрилати, стирени, метакриламіди, акриламіди, вінілові естери, N-вінілгетероциклі, дієни), температур (-15..180 °C) та використовуваних розчинників (у тому числі і вода). Додатково, більшість активних функціональних груп не потребують захисту або специфічних умов для здійснення полімеризації.

Рис. 1.1. Загальні структури чотирьох основних класів RAFT агентів

Як було сказано вище, ключовий елемент RAFT полімеризації — α-заміщені дитіоформіати [15]. Залежно від виду замісника існує чотири основні класи, а саме: дитіоестери, тритіокарбонати, дитіокарбамати та ксантати, як показано на
1. Також існують інші види RAFT агентів, але кількість їхніх представників значно менша, і тому вони розглядатимуться окремо в частині 1.3.

Z-група модулює швидкість приєднання макрорадикалів за подвійним зв’язком тіокарбонільної групи в структурах 1.1 та 1.3, а також швидкість фрагментації радикалів 1.2 та 1.5 (схема 1.1). У цілому значення константи k_{add} можна змінити на п’ять порядків за допомогою маніпуляцій зі структурою Z-групи. Найбільш реакційноздатні СТА — дитіоестери та тритіокarbonати, в той час як ксантати та дитіокарбамати мають значно нижчу активність, у зв’язку з делокалізацією неподіленої йонної пари і зменшенням порядку подвійного C=S зв’язку як показано на рис. 1.2.

![Схема 1.2. Канонічні форми ксантатів та дитіокарбаматів](image)

У разі обмеженої доступності йонної пари, викликаної її входженням до складу ароматичної системи піролу або ефектом карбонільної групи в другому положенні піролідону, відповідні дитіокарбамати за реакційною здатністю наближаються до дитіоестерів та тритіокarbonатів. Ефективність ксантатів так само модулюється делокалізацією йонної пари атома оксигену.

На основі цього ефекту було розроблено ряд RAFT агентів, активність яких може перемикатися за допомогою протонування/депротонування (схема 1.3) [23–27]. При цьому нейтральна форма володіє характеристиками класичних дитіокарбаматів, а протонована — дитіоестерів.
Виходячи з реакційної здатності, мономери поділяються на дві групи: “більш активовані” та “менш активовані”. Представники першої групи містять подвійний зв'язок спряжений з ароматичним циклом (стирен, вінілпіридини), карбонільною (метакрилати, акрилати, метакриламіди, акриламіди) або нітрильною (акрилонітрил) групами. В той же час “менш активовані” мономери містять подвійний зв'язок поєднаний з насиченим атомом Карбону (хлорид діалілдиметиламонію), оксигену або нітрогену (вінілові естери або аміди) [11].

Відповідно до механізму наведеного на схемі 1.1, “більш активовані” мономери мають низькі значення \(k_p \) та \(k_{add} \). При цьому більш реакційноздатні RAFT агенти (дитіоестери, тритіокарбонати) дозволяють отримувати їх полімери з високим ступенем контролю, в той час як дитіокарбамати та ксантати виявляються абсолютно неприйнятними. “Менш активовані” мономери навпаки мають високі значення \(k_p \) та \(k_{add} \) [5–8]. Виходячи з цього вони незворотньо зв'язуються з дитіоестерами та тритіокарбонатами, і полімеризація не спостерігається, тому задля досягнення задовільних результатів слід використовувати RAFT агенти з дезактивованою тіокарбонільною групою.

Виходячи з цього можна сформулювати загальні правила вибору Z-групи RAFT агенту для полімеризації того чи іншого мономеру (рис. 1.3). Відповідно до загальних тенденцій, введення електроноакцепторних замісників до складу Z групи підвищує стабілізацію проміжних радикалів 1.2 та 1.5 і підвищує реакційну здатність CTA. Проте, в той же час зростає і ймовірність побічних реакцій, таких як диспропорціонування чи рекомбінація цих радикалів, а також сповільнення полімеризації [25].
Рис. 1.3. Правила выбора Z группы RAFT агента (Z(C=S)SR). Швидкость приєднання зменшується, і швидкість фрагментациї зростає зліва направо [25]

R-група RAFT агенту повинна бути хорошою відхідною групою, в порівнянні з макрорадикалом Pₙ* задля забезпечення ефективного розпаду 1.2 на продукти 1.3 та R* (kᵢ > k-αdd). До того ж вивільнений радикал R* повинен ефективно реініціювати полімеризацію (kᵢR > kᵢp). В інших випадках можливе значне сповільнення полімеризації та незадовільний ступінь контролю [26, 27]. Загальні правила выбора R-групи наведені на рис. 1.4.

Рис. 1.4. Правила выбора R группы RAFT агента (Z(C=S)SR). Швидкість фрагментациї та ефективність зменшуються зліва направо [26]

Рис. 1.5. Промислові RAFT агенти
1.2. Методи синтезу основних класів RAFT агентів

1.2.1. Алкілювання карбодитіоат-аніонів

Синтез RAFT агентів загальної формули 1.1 найчастіше здійснюється шляхом взаємодії карбодитіоат-аніонів 1.7 із алкілюючими реагентами, зазвичай представленими різноманітними алкілгалогенідами (схема 1.4). Варіації цього методу зустрічаються практично у всіх роботах пов’язаних із синтезом RAFT агентів. Він прийнятний для синтезу всіх чотирьох базових класів RAFT агентів, проте обмежується введенням лише первинних або вторинних R груп. Використання третинних алкіляторів ускладнене низькою швидкістю нуклеофільного заміщення, а також побічними реакціями елімінування [40]. Тим не менше, існують приклади отримання третинних тритіокарбонатів із високими виходами (70–80 %) [26, 41–44].

Схема 1.4

Алкіл- та арилметандитіоати зазвичай отримують реакцією реактиву Гриньєра з сірковуглецем [46]. Додатково можуть використовуватись солі
натрію або триалкіламонію [40], але в той же час використання алкіллітіїв забезпечує недостатні виходи [39]. В якості прикладу на схемі 1.5 наводиться реакція фенілмагнійброміду 1.8 з сірковуглецем та послідовним алкілюванням отриманої солі 1.9 за допомогою бензилброміду. Цей метод дозволяє отримувати бензилдитіобензоат 1.10 з виходом 62 % [26].

Схема 1.5

Арилметандітіоати також отримуються шляхом окисного сульфурування бензилгалідів, наприклад, реакцією бензилхлориду з метилатом натрію та сіркою [26, 47, 48] або реакцією трихлорметилбензену 1.11 з K₂S (схема 1.6).

Схема 1.6

Під час синтезу несиметричних тритіокарбонатів (Z ≠ SR), ксанатів та дитіокарбаматів, карбодітіоат-аніони зазвичай утворюються шляхом взаємодії ZH (тіол, спирт або амін) із сірковуглецем у присутності основи. Наприклад, н-бутил-фенілетилтритіокарбонат 1.12 отримано з кількісним виходом у результаті взаємодії н-бутантіолу, сірковуглецю та (1-бромоетил)бензену в присутності триетиламіну (схема 1.7) [49].

Схема 1.7
Оскільки спирти та аміни мають меншу кислотність, ніж аналогічні тіоли, синтез ксантатів та дитіокарбаматів зазвичай потребує використання сильніших основ, таких як гідроксид натрію [50–52] або гідрид натрію [53–56] для утворення карбодитіоат-аніонів. В якості прикладу, на схемі 1.8 наводиться синтез O-(2,2,2-трифлуороетил)ксантату 1.13 з виходом 69 % [53].

Схема 1.8

Деякі прості карбодитіоати, такі як O-етилксантогенат калію 1.14 та N,N-діетилдитіокарбамат 1.16, комерційно доступні і можуть використовуватись для синтезу азидфункціонального ксантату 1.15 з виходом 74 % [57] або бензил(N,N-діетил)дитіокарбамату 1.17 із виходом 65 % [25] як показано на схемі 1.9.

Схема 1.9

Цей підхід був удосконалений у роботі [42], шляхом використання ненуклеофільних неорганічних основ, таких як фосфат калію або карбонат цезію. Умови вибраних синтезів наводяться в таблиці 1.2.

Синтез дитіокарбаматів з таких гетариламінів як 1.18 та 1.20, на відміну від аліфатичних амінів, потребує використання сильніших основ. У зв’язку з низькою нуклеофільністю вільних NH груп, задля досягнення ефективної реакції з сірковуглецем необхідне їх повне депротонування. У разі використання бутиллітію [23, 24, 58] вдається отримати сполуку 1.19 з виходом 59 %, проте в
Приклади умов синтезу вибраних RAFT агентів [42]

<table>
<thead>
<tr>
<th>ZH</th>
<th>Алкілятор</th>
<th>Умови реакції</th>
<th>Вихід</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PhCH₂SH</td>
<td>PhCH(CH₃)Br</td>
<td>ацетон, K₃PO₄, 4 год</td>
<td>91 %</td>
</tr>
<tr>
<td>2 Імідазол</td>
<td>PhCH(CH₃)Br</td>
<td>ацетон, K₃PO₄, 4 год</td>
<td>78 %</td>
</tr>
<tr>
<td>3 EtOH</td>
<td>PhCH(CH₃)Br</td>
<td>етанол, Cs₂CO₃, 4 год</td>
<td>73 %</td>
</tr>
<tr>
<td>4 (i-Pr)₂NH</td>
<td>PhCH₂Br</td>
<td>етанол, Cs₂CO₃, 10 хв</td>
<td>61 %</td>
</tr>
<tr>
<td>5 PhNHCH₃</td>
<td>PhCH₂Br</td>
<td>етанол, Cs₂CO₃, 4 год</td>
<td>70 %</td>
</tr>
</tbody>
</table>

той же час вихід сполуки 1.21 був менше 5 % (Схема 1.10). Ця проблема вирішується використанням сильних ненуклеофільних основ, таких як трет-бутилат, що дозволяє отримати цільову сполуку з виходом 45 % [29].

Схема 1.10

Симетричні тритіокарбонати, такі як дібензилтритіокарбонат, можуть бути отримані шляхом прямої взаємодії алкілгалогеніду та сірковуглецю в присутності основи. У разі використання гідроксидів у ролі основи, реакція перебігає з утворенням тритіокарбонат-аніону CS₃²⁻ 1.22 [59–61] як показано на схемі 1.11. Надалі він може бути проалкільований із утворенням цільової сполуки.
Зазвичай цей синтез передбачає використання 2–3 кратного надлишку сірковуглецю, проте було показано, що при дбайливому підборі розчинника та основи можливе досягнення кількісного виходу і при використанні стехіометричних кількостей реагентів [62, 63].

Існує багато варіантів експериментальних умов цієї реакції. Деякі передбачають використання двофазних систем із реагентами міжфазового переносу [64–65], в той час як інші — полярних органічних розчинників, таких як ацетонітрил чи ДМФА [63]. Також існують більш специфічні варіації реакційних умов [66–68]. При цьому ефективність утворення тритіокарбонат-аніону напряму залежить від сили основи (таблиця 1.3). Найкраща ілюстрація — синтез дібензилтритіокарбонату (схема 1.12) [63].

<table>
<thead>
<tr>
<th>Катіон</th>
<th>Час, год</th>
<th>Вихід, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>24</td>
<td><1</td>
</tr>
<tr>
<td>Na</td>
<td>24</td>
<td><1</td>
</tr>
<tr>
<td>K</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Cs</td>
<td>12</td>
<td>99</td>
</tr>
</tbody>
</table>

Вихід RAFT агентів отриманих із карбодитіоат-аніонів також залежить від нуклеофільності реагенту Z− (схема 1.4). Якщо це слабкий нуклеофіл (наприклад, феноксид або тіофеноксид), розпад аніону 1.7 на вихідні речовини стає
домінуючим процесом і для синтезу цільового продукту 1.1 доводиться використовувати інші підходи.

Слід мати на увазі високу леткість та токсичність сірковуглецю, який використовується практично у всіх реакціях, описаній у цій частині, та користуватися відповідними запобіжними заходами.

1.2.2. Реакції тіоацилювання

Тіофосген 1.23 та його еквіваленти, такі як 1,1'-тіокарбоніллідімідазол (TCDI) 1.26, дозволяють отримувати RAFT агенти виходячи з малореакційноздатних вихідних сполук ZH, які не здатні на ефективну взаємодію з сірковуглецем. Цей метод показав високу ефективність у синтезі ксанатів та тритіокарбонатів 1.25 виходячи з відповідних фенолів або тіофенолів [41, 57, 69]. При цьому проміжні тіохлорангідриди 1.24 не потребують виділення та очистки, і реакція зазвичай проводиться в one-pot форматі (Схема 1.13).

![Схема 1.13](image1)

TCDI 1.26 може використовуватись для синтезу імідазолілметандитіоатів 1.27 з виходом від 54 % (Схема 1.14) [41, 70, 71], а також для зручного синтезу тритіокарбонатів [69].

![Схема 1.14](image2)
Вказана методологія була використана науковою групою Себастьяна Пер’єра для синтезу ряду тритіокарбонатів 1.28–1.30, дитіокарбаматів 1.30 та 1.33 і ксанту 1.32 з хорошими виходами (схема 1.15) [72].

Схема 1.15

Задля можливості використання TCDI, Z-група повинна мати вищу нуклеофільність, аніж імідазол. У цьому сенсі тіофосген має безсумнівну перевагу, оскільки хлорид-аніон — набагато краща відхідна група. Але, тим не менше, висока реакційна здатність та токсичність роблять його не найкращим реагентом у практичному сенсі.

У той час як тіоацилювання за допомогою тіофосгену або TCDI дозволяє отримувати RAFT агенти з менш реакційноздатних вихідних речовин ZH, цей метод також має певні обмеження. Так, введення деяких R-груп (наприклад, ціанометил або 2-ціанопропан-2-іл) ускладнюється проблемами в синтезі та використанні відповідних тіолів [73–75].
1.2.3. Тіонування карбонових кислот та їх естерів

Тіонування карбонільних сполук може здійснюватись за допомогою пентасульфіду фософору, реагента Лауссона (LR) 1.34 [76], а також реагентів Деві [77]. Механізм тіонування з використанням LR [78] включає взаємодію реакційноздатного дитіофосфініліду 1.35 з карбонільною групою субстрату та подальше розщеплення утвореного гетероциклу (схема 1.16).

![Схема 1.16](https://example.com/scheme1.16.png)

В якості прикладу використання LR в синтезі RAFT агентів можна навести отримання трет-бутилдитіобензоату 1.37 [26]. Обробка бензоїлхлориду трет-бутантіолом дозволяє отримати з виходом 50 % тіолоестер 1.36, який за допомогою кип’ятіння з LR перетворюється в дитіоестер (схема 1.17).

![Схема 1.17](https://example.com/scheme1.17.png)

У роботі [79] описується використання P₄S₁₀ для приготування дитіоестерів виходячи з карбонових кислот та тіолів або спиртів. Запропонований механізм (схема 1.18) включає утворення активованої похідної карбонової кислоти, та її взаємодію з тіолом, який вводиться в реакційну суміш або утворюється in situ з
P₄S₁₀ та спирту. Механізм подальшого тіонування карбонільної групи аналогічний описаному вище для LR.

Схема 1.18

На схемі 1.19 наведено приклад синтезу бензил-4-метоксидитіобензоату 1.38 з виходом 91%, виходячи з 4-метоксибензойної кислоти та бензилмеркаптану [79]. Аналогічним шляхом можуть бути отримані поліфункціональні RAFT агенти виходячи з полікислот [80].

До недоліків цього методу слід віднести обмежену доступність деяких вихідних тіолів, прийнятність його лише для синтезу дитіоестерів, а також деякі побічні реакції [79], які звужують ряд прийнятних функціональних груп.

1.2.4. Кетоформна реакція

Кетоформна реакція [81] була адаптована для синтезу тритіокарбонатів [82], дитіокарбаматів та ксантатів [83] з третинними карбоксильними групами. Ключовий крок механізму цього перетворення (схема 1.20) включає нуклеофільне розкриття дихлороепоксидного циклу карбодитіоат-аніоном [82]. Гідроліз отриманого хлорангідридіду дозволяє отримати цільові карбоксифункціональні RAFT агенти.
Реакція між сірковуглецем, хлороформом, ацетоном та гідроксидом натрію в присутності катализатора фазового переносу дозволяє отримати симетричний тритіокарбонат 1.39 з виходом 40 % (схема 1.21).

Введення до реакційної суміші тіолу, аміну або спирту дозволяє оримувати несиметричні тритіокарбонати, дитіокарбамати або ксантати (наприклад 1.40–1.42). Цей підхід описано в ряді робіт [84–90] з виходами цільових сполук від 35 % до 100 %. Фірма Lubrizol адаптувала вищезгаданий процес для виробництва тритіокарбонату CTA-1 (рис. 1.5) в мультитонних кількостях [91].

Головна перевага цього підходу — можливість синтезу різноманітних RAFT агентів з третинною карбоновою кислотою в ролі R групи всього за один крок. Проте слід мати на увазі двохфазний характер реакційного середовища і ретельно вибирати реагенти [83].
1.2.5. Лужна трансестерифікація

Дитіоестери на основі тіогліколевої кислоти використовуються в ролі вихідних речовин для синтезу RAFT агентів [92–94], завдяки їх простому перетворенню в інші дитіоестери при обробці тіолами. Наприклад, взаємодія сполуки 1.43 з бензилмеркаптаном у лужних умовах, як показано на схемі 1.22, дозволяє отримати дитіобензоат 1.10 з виходом 94 % [95].

Схема 1.22

При проведенні реакції в водному середовищі та утворенні гіdroфобного дитіоестеру, вилучення продукту зі сфери реакції зсуває рівновагу в бік повної трансестерифікації. Аналогічно, в разі проведення реакції в органічному розчиннику, обробка реакційної суміші водним лугом також зсуває рівновагу за рахунок екстракції утвореного тіогліколяту [92].

Незважаючи на простоту такого перетворення, його практичне використання обмежене доступністю відповідних тіолів.

1.2.6. Приєднання дитіокарбонових кислот до алкенів

Взаємодія між дитіокарбоновими кислотами та електронозбагаченими олефінами (наприклад, стирен, α-метилстірен, вінілові естери тощо) призводить до утворення продуктів приєднання за Марковніковим [96]. Наприклад, реакція між дитіобензойною кислотою 1.44 та α-метилстіреном дозволяє отримати кумілдитіобензоат 1.45 з виходом 33 % як показано на схемі 1.23 [97].

Аналогічна методологія дозволила отримати кумілдитіоацетат (вихід 45 %) [57], кумілфенілдитіоацетат 1.46 (вихід 36 %) [98], кумілпіролокарбодитіоат 1.47
(вихід 28 %) [99], (1-фенілетил)дитіобензозат (вихід 43 %) [26], а також (2,4,4-триметилpent-2-іл)дитіобензозат 1.48 (вихід 36 %) [45].

Схема 1.23

У роботі [100] описується регіоселективність приєднання тіобензойної кислоти 1.49 до стирену. В класичних умовах реакція перебігає проти правила Марковнікова з утворенням продукту 1.50. Проте в присутності кислот Льюїса (наприклад, Монтморилоніт К10) вдається змінити напрямок приєднання з утворенням тіоестеру 1.51, який перетворюється в цільовий дитіоестер 1.52 дією LR, як показано на схемі 1.24.

Схема 1.24

У разі реакції з електронозбідненими алкенами (акрилати, метакрилати, акриламіди, метакриламіди тощо) відбувається приєднання за Міхаелем (схема 1.25) [96]. Проте первинні алкіл-радикали — погані радикальні відхідні групи, тому сполуки типу 1.53 не представляють інтересу в ролі RAFT агентів.
У разі використання наведеного методу слід приділяти значну увагу очистці отриманих продуктів, оскільки навіть слідові кількості дитоксилот можуть призвести до негативних ефектів в ході RAFT полімеризації [101].

1.2.7. Радикальне заміщення в біс(тіоацил)дисульфідах

Декомпозиція біс(тіоацил)дисульфідів, таких як сполука 1.54, при взаємодії з радикалами утвореними з азо-ініціаторів (наприклад, 1.55) вважається найкращим методом для синтезу RAFT агентів з третинними R-групами. Наприклад, дитіоестер 1.56 утворюється з виходом 68 % (схема 1.26) [102].

Описаний підхід має виняткове значення, оскільки він чи не єдиний дозволяє синтезувати RAFT агенти для полімеризації метакрилатів та
метакриламідів, проте він також не позбавлений обмежень, таких як низька доступність певних біс(тіоацил)дисульфідів та функціональних азо-ініціаторів.

1.2.8. Радикальна трансестерифікація

Інший важливий метод синтезу RAFT агентів з третинними гомолітичними відхідними групами включає обмін R-груп шляхом нагрівання вихідного RAFT агенту з азо-ініціатором. При цьому задля ефективного обміну вихідна R-група повинна утворювати стабільніший радикал, аніж та, яку треба ввести [26]. Таким чином, дитіоестери з первинними чи вторинними замісниками інертні в умовах реакції. Як приклад на схемі 1.27 наводиться синтез (2-цианопропан-2-іл)дитіобензоату 1.57 виходячи з кумілдитіобензоату 1.45 та АІБН.

![Схема 1.27](image)

Схема 1.27

У цілому описаний підхід прийнятний лише в разі недоступності відповідних біс(тіоацил)дисульфідів.

1.3. Методи синтезу мінорних класів RAFT агентів

Окрім описаних вище основних класів α-заміщених дитіоформіатів існує певна кількість гетероелементзаміщених RAFT агентів на основі таких елементів як флуор, селен та фосфор. Ця частина присвячена їх синтезам.

1.3.1. Флуорокарбодитіоати та сульфонілметандитіоати

Зазвичай ці сполуки отримують за допомогою тіоацилювання (схема 1.28). Так бензилхлорокарбодитіоат 1.58 можна отримати з виходом 50 %, виходячи з
тіофосгену 1.23 та бензилмеркаптану. Далі за допомогою його реакції з KF можна отримати бензилфлуорокарбодитіоат 1.59 з виходом 50 % [107]. Аналогічно при взаємодії з метил- або фенільсульфінатом натрію утворюються бензилсульфонілметандитіоати 1.60 з виходами 10 % (CH₃) або 70 % (Ph) [108].

Схема 1.28

1.3.2. Селеновмісні RAFT агенти

Останнім часом значний інтерес викликають RAFT агенти, отримані шляхом заміни сульфуру на селен [109–114], у зв’язку зі схожістю та в той же час відмінністю властивостей цих елементів. Робота [109] присвячена синтезу ряду диселенокарбаматів шляхом one-pot взаємодії між вторинним аміном, селеновуглецем CSe₂ 1.61 та алкілгалогенідом або алкеном (схема 1.29). У зв’язку з високою реакційною здатністю та схильністю селеновуглецю до самополімеризації, синтез диселенокарбамат-аніонів 1.62 проводили при низькій температурі та без розчинника. Алкілювання солі 1.62 за допомогою первинних або вторинних алкілгалогенідів дозволяє отримати селенокарбамати 1.63 з хорошими (72–92 %) виходами. Аналогічно, за допомогою реакції Міхаеля можна отримати сполуки 1.64 з виходами 83–91 %, проте вони не представляють інтересу в контексті RAFT полімеризації.
У наступних роботах [110, 111] цей підхід було адаптовано для синтезу диселенокарбонатів та тіодиселенокарбонатів, як показано на схемі 1.30.

Там само [111] описано синтез дибензилселенодитіокарбонату 1.66 та дібензилтриселенокарбонату 1.68 за допомогою алкілювання тіодиселенокарбонату 1.65 та триселенокарбонату 1.67 аніонів (схема 1.31). Незважаючи на простоту та ефективність цього методу, головний його недолік — використання СSe₂, у зв’язку з його нестабільністю та високою токсичністю [112]. Тому було розроблено ряд синтезів селенорганічних сполук, які спрямовані на мінімізацію його використання [113–115]. Вони ґрунтуються на використанні селеніду натрію [111], який може бути отриманий безпосередньо перед реакцією відновленням селену борогідридом натрію.
У роботі [113] описується синтез диселенокарбамату натрію 1.69 шляхом приєднання гідроселеніду натрію до фенілселеноціанату і його циклізація в досить цікавий гетероциклічний RAFT агент 1.70 з виходом 37 % (схема 1.32).

[Diagram 1.32]

Схема 1.32

Олексій Брусиловець розробив простий та ефективний синтез [114] N,N-диметилдиселенокарбаматів 1.72, виходячи з гідроселеніду натрію та хлориду (дихлорометилен)диметиламонію 1.71 (схема 1.33).

[Diagram 1.33]

Схема 1.33

Цікавий підхід було використано для синтезу біс(селенобензоїл)диселеніду 1.73, виходячи з бензилхлориду та елементного селену [115]. Радикальне диспропорціонування сполуки 1.73 з азо-ініціатором 1.55 дозволило отримати з загальним виходом 32 % диселенобензоат 1.74, як показано на схемі 1.34. Описаний метод можна визнати найкращим з точки зору зеленої хімії, оскільки він дозволяє уникнути використання сильнопахнучих та високотоксичних селеновуглецю та селенідів.

[Diagram 1.34]
1.3.3. Фосфорорганічні RAFT агенти

Особливої уваги удостоєні RAFT агенти з атомом фосфору поєднаним безпосередньо з тіокарбонільною групою. З позиції подібності властивостей ксанатів та дитіокарбamatів, фосфіноїлметандитіоати повинні бути аналогами несиметричних тритіокарбонатів. Перше припущення про можливість використання (діетоксифосфорил)метандитіоатів у ролі RAFT агентів було зроблене в роботі [2]. Пізніше з'явився ряд робіт присвячених їх синтезу та властивостям [116–120]. В якості вихідної речовини використовувались дієтилфосфіт або діетилтіофосфіт (схема 1.35). Депротонування дієсо гідриду натрію з наступним приєднанням утвореного аніону до сірковуглецю дозволяє отримати карбодитіоат натрію 1.75, алкілювання якого дозволяє отримати з хорошими виходами (65–78 %) дитіоформіати 1.76 [116–118].

![Схема 1.35](image)

Схема 1.35

Оскільки спроби окиснення солей 1.75 до відповідних біс(тіоацил)дисульфідів були невдалими [119], для синтезу (діетоксифосфорил)метандитіоатів з третинними R-групами була використана радикальна трансестерифікація. Таким чином, RAFT агент 1.78 був отриманий з виходом 80 % за допомогою реакції АІБН та трифенілметил(діетоксифосфорил)метандитіоату 1.77 (схема 1.36) [119].

![Схема 1.36](image)
Окрім цього, в роботі [120] описаний синтез бібліотеки фосфорилметан-дитіоатів з широкою варіацією замісників як навколо атома фосфору, так і в дитіоформатній групі з використанням відносно м’якої основи — карбонату цезію.

У працях [121, 122] описуються синтези та використання в RAFT полімеризації комплексів (дифенілфосфіноїл)метандитіоатів з карбонілами металів 1.80, які можуть бути отримані з комплексів дифенілфосфіну 1.79 аналогічно методу описаному вище для фосфітів (схема 1.37).

Схема 1.37

Незважаючи на це, існує значна кількість інших варіантів заміщення навколо атома фосфору, які можуть бути використані для модифікації реакційні здатності фосфорорганічних RAFT агентів.

1.4. Стананкарбодитіоати та методи їх синтезу

Незважаючи на синтетичну доступність триалкілстанан- та триарилстананкарбодитіоатів 1.84 [123–131], до цього часу не було здійснено жодних спроб використання цих сполук у ролі регуляторів для RAFT полімеризації, а кількість їх представників обмежена. На сьогоднішній день описано всього одинадцять сполук цього класу, які можуть бути синтезовані за допомогою методу показаного на схемі 1.38. Вихідна речовина, наприклад, трифенілстанилхлорид 1.81 відновлюється металічним літієм до трифенілстаниллітію 1.82. Ця реакція дуже чутлива до дисперсності літію, і повне перетворення може тривати декілька діб. Потім отриманий аніон приєднується до сірковуглецю з утворенням трифенілстананкарбодитіоату літію 1.83, алкілювання якого дозволяє отримати алкілтрифенілстананкарбодитіоати 1.84.
Всього в літературі описано дев’ять трифенілстананкарбодитіоатів [126–128, 131], де $R_2 = \text{метил, етил, ізопропіл, аліл, бензил, 1,3-пропіліден, 1,4-бутиліден, трифенілстаніл, трифенілстанілметил.} \text{У роботах [126, 129] описано метилові естери трициклогексилстанан-}, \text{три-o-толілстанан- та три-n-толілстананкарбодитіоатів. Також було встановлено структури двох сполук за результатами РСД [124, 130] — для метил- та бензилтрифенілстанан-карбодитіоату.}

1.5. Висновки до розділу 1

Незважаючи на сотні описаних RAFT агентів, пошуки “універсального” CTA, який буде здатний контролювати полімеризацію як “більш активованих” так і “менш активованих” мономерів, залишаються актуальними. Спроби використання \textit{ab initio} розрахунків для цієї мети показали незадовільну ефективність, тому єдиним прийнятним методом залишається прямий синтез нових RAFT агентів та їх випробування в радикальній полімеризації.

На сьогоднішній день описана обмежена кількість fosфорилметандитіоатів та триарилстананкарбодитіоатів, методи їх синтезу, а також їхня ефективність у контролюваній радикальній полімеризації залишаються маловивченими.

Також у ряді статей [17, 122] наводиться можливість використання ЯМР \textit{in situ} для дослідження перебігу полімеризації. Введення атома fosфору або стануму в α-положення дитіоформіату відкриває нові обрії для дослідження кінетики полімеризації та характеристика отриманих полімерів за допомогою методів гетероядерного ЯМР [132].
РОЗДІЛ 2
СИНТЕЗИ ТА ХІМІЧНІ ВЛАСТИВОСТІ НОВИХ RAFT АГЕНТІВ

2.1. Синтез фосфориленметандііоатів

Аналіз літературних даних показав, що на сьогодні описано всього лише близько десяти спроб використання фосфорорганічних RAFT агентів, і їхня ефективність у контролюваній радикальній полімеризації залишається малодослідженою. В результаті дисертаційної роботи Ролана Жажа [133] запропоновано синтез трьох фосфоровмісних дитіоформіатів, виходячи з дифенілфосфінсульфіду 2.1 а, біс(діізопропіламіно)фосфінсульфіду 2.1 б або дифенілфосфіноксиду 2.1 с. Попередні результати їх досліджень у RAFT полімеризації показали, що (1-фенілентил)(дифенілфосфорил)метандііоат та (1-фенілентил)(дифенілфосфоротіоїл)метандііоат мають практично однакову реакційну здатність, у той час як варіація інших замісників навколо фосфору суттєво змінює реакційну здатність тіокарбонільної групи і, відповідно, ефективність контролю над полімеризацією.

![Структури фосфіноксидів 2.1 а-ф](image)

Тому для нашого дослідження було прийняте рішення зосередитися в першу чергу на варіації замісників навколо центрального атома фосфору. Для цього було синтезовано ряд із шести фосфорилметандііоатів з використанням децю модифікованого синтетичного методу описаного в роботі [133]. В якості вихідних речовин були обрані дифенілфосфіноксид 2.1 с [134], біс(діізопропіламіно)фосфіноксид 2.1 d [135], дициклогексилфосфіноксид 2.1 е [136] та ді(піперидин-1-іл)фосфіноксид 2.1 f [137] (рис. 2.1), оскільки вони...
представляють чотири різні види заміщення навколо фосфору. Сполуки 2.1 c-f можуть бути отримані в кількостях від двадцяти грамів з хорошими виходами та високою чистотою за методиками, описаними в роботах [134–137]. Фосфіноксиди 2.1 c-e — стійкі кристалічні речовини, тоді як ди(піперидин-1-іл)фосфіноксид 2.1 f — нестабільна рідина, яку можна зберігати протягом декількох тижнів у холодильнику.

На першій стадії фосфіноксиди 2.1 c-f депротонуються за допомогою еквівалентної кількості бутиллітію при низькій температурі. Утворення сполук 2.2 a-d супроводжується виникненням характерного забарвлення від жовтого до темно-оранжевого, залежно від заміщення. Потім реакційну суміш обробляють надлишком сірковуглецю з утворенням темно-червоного розчину фосфорилметандитіоатів літію 2.3 a-d. На кінцевій стадії утворену сіль алкілюють 1-(бромоетил)бензеном для синтезу сполук 2.4 a-d або метил-2-бромопропіонатом для синтезу сполук 2.4 e-f (схема 2.1).

\[
\begin{align*}
\text{R}^1\text{P}\text{H} & \xrightarrow{\text{BuLi, TF}} \text{R}^1\text{P-Li} \\
2.1 \text{c-f} & \xrightarrow{-40..0^\circ\text{C}} \xrightarrow{\text{CS}_2, \text{TF}} \text{R}^1\text{O}^\text{S-}\text{Li}^+ \\
2.2 \text{a-d} & \xrightarrow{0..20^\circ\text{C}} \text{R}^1\text{O}^\text{S-}\text{R}^2 \\
2.3 \text{a-d} & \xrightarrow{10..15^\circ\text{C}} \text{R}^1\text{O}^\text{S-}\text{R}^2 \\
2.4 \text{a-f} & \xrightarrow{} \text{R}^2\text{Br, TF} \\
\end{align*}
\]

Схема 2.1

Утворення кінцевого продукту супроводжується дуже мальовничою зміною з червоного на насичено-рожеве забарвлення. Власне, характеристичне рожеве
забарвлення фосфорилметандитіоатів слугує критерієм успішного синтезу. Після концентрування реакційної суміші при пониженому тиску та очистки за допомогою хроматографії, сполуки 2.4 а-c були отримані в вигляді рожевих кристалів, у той час як сполуки 2.4 e-f існують у вигляді в’язких рожевих рідин.

Виходи та чистота отриманих фосфорилметандитіоатів сильно залежать від структури вихідного фосфін оксиду (схема 2.1). Найкращі результати отримані для сполук 2.4 b,d,e, які містять зв’язок фосфор-нітроген, виключення складає лише (дифенілфосфорил)метандитіоат 2.4 f. При цьому варто зазначити, що задля отримання найкращих результатів, при синтезі сполук 2.4 a,c,f слід жорстко дотримуватися температурного режиму та умов методики, оскільки навіть незначні відхилення можуть привести до зниження виходу.

Структури сполук 2.4 a-f були підтверджені за допомогою ЯМР, ІЧ спектроскопії та МСВР.

МСВР з електроспрей-йонізацією дозволила зареєструвати піки молекулярних йонів для всіх шести сполук 2.4 a-f. Отримані значення m/z співпадають з теоретично розрахованими з точністю не менше ніж 99,999%.

Аналіз 1Н ЯМР спектрів синтезованих дитіоформіатів дозволив запропонувати критерієм доведення будови значення хімічних зсувів та КССВ сигналів протонів метильної та метинової груп у складі спільного для всіх шести сполук фрагменту SCH(CH₃). Хімічні зсуві метинових протонів в сполуках 2.4 a-d знаходяться в області 5,00..5,25 м.ч., тоді як у сполуках 2.4 e,f вони зсунуті в сильне поле з хімічними зсувами 4,60..4,70 м.ч. Розщеплення на дублет квартетів з КССВ 3J_H,H = 7,1..7,3 Гц та 4J_P,H = 1,2..2,1 Гц (таблиця 2.1) вказують на взаємодію цих протонів із сусідньою метильною групою та атомом фосфору. Сигнали метильних груп спостерігаються у вигляді дублету дублетів з хімічними зсувами 4,60..4,70 м.ч. в сполуках 2.4 a-d та 2.4 e,f, відповідно. Значення КССВ 3J_H,H підтверджують кореляцію з протонами метинової групи, тоді як 5J_P,H має значення 0,6..1,0 Гц, що вказує на слабку спин-спінову взаємодію між протонами та фосфором через 5 зв’язків.
Основний критерій доведення будови за допомогою 13C ЯМР спектроскопії — сигнал тіокарбонільної групи в вигляді дублету в області 235..243 м.ч. (таблиця 2.1). Значення КССВ $J_{P,C}$ дуже сильно варіюються залежно від заміщення навколо атома фосфору. Так, сполуки 2.4 b,d,e з “амідним” фосфором мають найвищі значення — близько 130 Гц, тоді як в інших сполуках константи розщеплення майже вдвічі менші — близько 75 Гц для сполук з дифенілфосфорильним фрагментом 2.4 a,f та всього 52,8 Гц для сполуки 2.4 c.

Таблиця 2.1

<table>
<thead>
<tr>
<th>сполука</th>
<th>2.4 a</th>
<th>2.4 b</th>
<th>2.4 c</th>
<th>2.4 d</th>
<th>2.4 e</th>
<th>2.4 f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H ЯМР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δCH, м.ч.</td>
<td>5,23</td>
<td>5,04</td>
<td>5,14</td>
<td>5,14</td>
<td>4,61</td>
<td>4,68</td>
</tr>
<tr>
<td>3J_{H,H}, Гц</td>
<td>7,2</td>
<td>7,1</td>
<td>7,1</td>
<td>7,1</td>
<td>7,3</td>
<td>7,3</td>
</tr>
<tr>
<td>4J_{P,H}, Гц</td>
<td>2,1</td>
<td>1,8</td>
<td>1,7</td>
<td>1,7</td>
<td>1,2</td>
<td>1,4</td>
</tr>
<tr>
<td>δCH3, м.ч.</td>
<td>1,74</td>
<td>1,67</td>
<td>1,67</td>
<td>1,71</td>
<td>1,56</td>
<td>1,58</td>
</tr>
<tr>
<td>3J_{H,H}, Гц</td>
<td>7,2</td>
<td>7,2</td>
<td>7,1</td>
<td>7,1</td>
<td>7,4</td>
<td>7,4</td>
</tr>
<tr>
<td>5J_{P,H}, Гц</td>
<td>0,9</td>
<td>0,7</td>
<td>---</td>
<td>0,6</td>
<td>1,0</td>
<td>0,8</td>
</tr>
<tr>
<td>13C{1H} ЯМР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δCS2, м.ч.</td>
<td>235 [133]</td>
<td>242,8</td>
<td>237,5</td>
<td>235,0</td>
<td>235,5</td>
<td>235,3</td>
</tr>
<tr>
<td>1J_{P,C}, Гц</td>
<td>76,1 [133]</td>
<td>126,2</td>
<td>52,8</td>
<td>130,4</td>
<td>130,3</td>
<td>74,8</td>
</tr>
<tr>
<td>31P{1H} ЯМР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ, м.ч.</td>
<td>24,9</td>
<td>14,9</td>
<td>51,4</td>
<td>14,1</td>
<td>14,1</td>
<td>22,9</td>
</tr>
<tr>
<td>ИЧ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ν_{P=O}$, см$^{-1}$</td>
<td>1190,0</td>
<td>1218,0</td>
<td>1164,3</td>
<td>1217,7</td>
<td>1217,9</td>
<td>1198,9</td>
</tr>
<tr>
<td>$ν_{C=S}$, см$^{-1}$</td>
<td>1097,1</td>
<td>1092,0</td>
<td>1081,3</td>
<td>1083,5</td>
<td>1069,3</td>
<td>1098,9</td>
</tr>
<tr>
<td>$ν_{C=O}$, см$^{-1}$</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1738,7</td>
<td>1737,6</td>
</tr>
<tr>
<td>МСВР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m/zотр.</td>
<td>383,0685</td>
<td>429,2170</td>
<td>395,1626</td>
<td>397,1538</td>
<td>379,1272</td>
<td>365,0441</td>
</tr>
<tr>
<td>m/zрозр.</td>
<td>383,0685</td>
<td>429,2163</td>
<td>395,1632</td>
<td>397,1537</td>
<td>379,1279</td>
<td>365,0441</td>
</tr>
</tbody>
</table>
Як і очікувалось, ^{31}P ЯМР виявився найчутливішим інструментом підтвердження структури синтезованих сполук. Найвище значення хімічного зсуву, а саме 51,4 м.ч. зафіксоване для сполуки 2.4 с, в той час як спекти сполук 2.4 a,f та 2.4 b,d,e містять сигнали з хімічним зсувом близько 25 м.ч. та 15 м.ч., відповідно (таблиця 2.1). Такі відмінності в хімічних зсувах природні для фосфіноксидів і викликані в першу чергу стеричними факторами — введення об’ємних замісників викликає дезекранування атома фосфору, що й спостерігається в разі сполуки 2.4 с з об’ємними циклогексильними групами.

ІЧ спекти містять характеристикну смугу поглинання подвійного зв’язку тіокарбонільної групи в області 1069..1099 см$^{-1}$. Вони лежать в області характерній для α-заміщених дитіоформіатів [122, 138, 139] і дещо варіюються залежно від природи замісників навколо атома фосфору. Смуга коливання подвійного зв’язку P=O лежить в інтервалі хвильових чисел 1164,3..1198,9 см$^{-1}$ для сполук 2.4 a,c,f та близько 1218 см$^{-1}$ для сполук 2.4 b,d,e. Додатково, спектри сполук 2.4 e,f містять інтенсивну смугу поглинання карбонільної групи з хвильовою частотою близько 1738 см$^{-1}$.

Структури фосфорилметандитіоатів 2.4 b,c були підтвердженні за допомогою РСД (рис. 2.2).

ЯМР спекти сполук 2.4 a-f та детальні описи результатів РСД сполук 2.4 b,c наведені в додатках 1–23.

Рис. 2.2. Молекулярні структури сполуки 2.4 b (ліворуч) та 2.4 c (праворуч) згідно результатів РСД
2.2. Синтези триарилстананкарбодитіоатів

Триарилстананкарбодитіоати понад 30 років залишалися поза сферою наукового інтересу. Кількість їх представників можна перелічити на пальцях, властивості майже не вивчені і, незважаючи на наявність реакційноздатної тіокарбонільної групи, можливість їх використання в RAFT полімеризації так ніколи й не вивчалась. Саме тому вони були обрані одним із ключових об’єктів нашого дослідження.

2.2.1. Алкілювання триарилстананкарбодитіоатів натрією

Для синтезу було обрано модифікований літературний метод [126] з використанням у ролі вихідної речовини комерційно доступного трифенілстанілхлориду або синтетично доступного три-н-толілстанілхлориду [140]. На відміну від літературного методу, для відновлення триарилстанілхлоридів 2.5 a,b нами було застосовано нафталенід натрію замість металічного літію. Така модифікація дозволила значно скоротити тривалість реакції та досягнути вищих виходів і чистоти цільових продуктів. Далі отримані триарилстанілнатрії приєднуються за подвійним зв’язком CS₂ з утворенням рожевих триарилстананкарбодитіоатів натрію 2.6 a,b. Вони досить стабільні в розчині, що дозволяє зберігати їх протягом декількох тижнів у холодильнику. В подальшому вони можуть бути трансформовані у відповідні алкілтриарилстананкарбодитіоати 2.7 a-h за допомогою алкілювання відповідними алкілбромуїдами (схема 2.2).

Після очистки, сполуки 2.7 a-d,g,h були отримані в вигляді рожевих кристалів, у той час як сполуки 2.7 e,f — у вигляді в’язких рожевих рідин. Слід зауважити, що (ціанометил)трифенілстананкарбодитіоат 2.7 f термічно нестабільний навіть при температурі -25 °C, що сильно звужує межі його використання. Тим не менше, його структура була всесторонньо досліджена за допомогою ЯМР, а також РСД.
Схема 2.2

Спектральні характеристики та результати РСД для синтезованого нами бензилтрифенілстананкарбоціанату 2.7a виявилися ідентичними до наведених у роботі [130].

Ключові спектральні характеристики трифенілстананкарбоціанатів 2.7a-f та три-n-толілстананкарбоціанатів 2.7g,h за результатами ЯМР, ІЧ спектроскопії та МСВР наводяться в таблицях 2.2 та 2.3, відповідно.

Елементний склад сполук 2.7a-h підтверджений з використанням МСВР з хімічною іонізацією. Слід зауважити, що сигнал молекулярного йону в мас-спектрах цих сполук малоінтенсивний внаслідок лабільності зв’язку Sn-C.

Сигнали протонів метиленових або метинових протонів у ¹H ЯМР спектрах дитіоформіатів 2.7a-h (таблиці 2.2, 2.3) знаходяться в області 4,18..4,46 м.ч. для SCH₂-груп (псевдотриплети) або 5,29..5,86 м.ч. для SCH-груп (мультиплети). В зв’язку з невисокою природною концентрацією ядер ¹¹⁹Sn — всього 8,59 % [132], кожен сигнал протонів проявляється у вигляді суперпозиції нерозщепленого та розщепленого сигналів зі співвідношенням інтенсивностей близько 9:1. Нерідко
інтенсивність сателітів нижча інтенсивності шуму, і розщеплення виявити не вдається. КССВ $^4J_{S,H}$ мають значення від 2,3 Гц для ціанометильної групи до 7,3 Гц для 1-фенілетильної, що співпадає з очікуванням для дальньої спін-спінової взаємодії через чотири зв’язки.

Таблиця 2.2

<table>
<thead>
<tr>
<th>сполука</th>
<th>2.7 a</th>
<th>2.7 b</th>
<th>2.7 c</th>
<th>2.7 d</th>
<th>2.7 e</th>
<th>2.7 f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H ЯМР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta_{\text{CH/CH}_2}$, м.ч.</td>
<td>4,43</td>
<td>5,84</td>
<td>4,18</td>
<td>4,29</td>
<td>5,29</td>
<td>4,23</td>
</tr>
<tr>
<td>$^3J_{H,H}$, Гц</td>
<td>---</td>
<td>7,1</td>
<td>---</td>
<td>---</td>
<td>7,3</td>
<td>---</td>
</tr>
<tr>
<td>$^4J_{S,H}$, Гц</td>
<td>4,2</td>
<td>7,3</td>
<td>---</td>
<td>---</td>
<td>5,9</td>
<td>2,3</td>
</tr>
<tr>
<td>13C{1H} ЯМР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_{CS_2}, м.ч.</td>
<td>264,7</td>
<td>264,0</td>
<td>264,8</td>
<td>265,0</td>
<td>263,3</td>
<td>262,6</td>
</tr>
<tr>
<td>119Sn{1H} ЯМР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_{Sn}, м.ч.</td>
<td>-191,0</td>
<td>-192,7</td>
<td>-187,2</td>
<td>-190,4</td>
<td>-186,6</td>
<td>-179,5</td>
</tr>
<tr>
<td>ІЧ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_{\text{C=S}}$, см$^{-1}$</td>
<td>1046,6</td>
<td>1040,5</td>
<td>1044,0</td>
<td>1050,0</td>
<td>1046,4</td>
<td>---</td>
</tr>
<tr>
<td>МСВР</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m/z_{\text{отр.}}$</td>
<td>515,0245</td>
<td>533,0482</td>
<td>564,0101</td>
<td>537,0179</td>
<td>511,0178</td>
<td>---</td>
</tr>
<tr>
<td>$m/z_{\text{розр.}}$</td>
<td>515,0259</td>
<td>533,0420</td>
<td>564,0114</td>
<td>537,0169</td>
<td>511,0157</td>
<td>---</td>
</tr>
</tbody>
</table>

Хімічні зсуви тіокарбонільних груп в 13C ЯМР спектрах мають чи не найвище значення серед відомих α-заміщених дитіоформіатів — до 265 м.ч. Тут слід відмітити, що це значення виходить за межі типового спектрального вікна для 13C ЯМР, яке обмежується 250 м.ч. Залежно від відстані до атома стануму, ряд сигналів атомів карбону розщеплюється в псевдотриплети зі значеннями КССВ до 550 Гц ($^1J_{P,C}$ $inco$-атомів карбону в трифенілистанільній групі).

Сигнали стануму в 119Sn ЯМР спектрах лежать в області -179,5...-192,7 м.ч. і сильно варіюються, залежно від природи замісника сполученого з атомом сульфуру. Цей сигнал слугує універсальним критерієм доведення будови,
оскільки спостерігається лише в сполуках з триарилстанкарбодитіоат-фрагментом. Загалом, для підтвердження структури отриманих сполук достатньо комбінації 1H та 119Sn ЯМР спектроскопії.

Таблиця 2.3

<table>
<thead>
<tr>
<th>СПОЛУКА</th>
<th>2.7 g</th>
<th>2.7 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H ЯМР</td>
<td>$\delta_{\text{CH/CH}_2}$, м.ч.</td>
<td>4,46</td>
</tr>
<tr>
<td></td>
<td>$^3J_{\text{H,H}}$, Гц</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>$^4J_{\text{Sn,H}}$, Гц</td>
<td>4,3</td>
</tr>
<tr>
<td>13C ЯМР</td>
<td>δ_{C}, м.ч.</td>
<td>266,3</td>
</tr>
<tr>
<td>119Sn ЯМР</td>
<td>δ_{Sn}, м.ч.</td>
<td>-181,3</td>
</tr>
<tr>
<td>ІЧ</td>
<td>$v_{\text{C=O}}$, см$^{-1}$</td>
<td>1040,1</td>
</tr>
<tr>
<td>МСВР</td>
<td>$m/z_{\text{отр.}}$</td>
<td>559,0730</td>
</tr>
<tr>
<td></td>
<td>$m/z_{\text{розр.}}$</td>
<td>559,0727</td>
</tr>
</tbody>
</table>

ІЧ спекти сполук 2.7 a-e містять характеристичні смуги поглинання тіокарбонільної групи в області 1040…1050 см$^{-1}$. Вони дещо нижчі зареєстрованих для фосфорилметандитіоатів, що може бути наслідком електронодонорної природи триарилстанільних груп.

Структури кристалічних триарилстанкарбодитіоатів 2.7 b-d,f-h були однозначно підтверджени за допомогою РСД (рис. 2.3).

ЯМР спекти сполук 2.7 a-h, а також детальні описи результатів РСД сполук 2.7 b-d,f-h наведені в додатках 24–66.
Рис. 2.3. Молекулярні структури сполук 2.7 b–d, f–h за результатами РСД
2.2.2. Спроба синетзу біс(триарилстанілкарбонотіоїл)дисульфідів

Оскільки використання сполуки 2.7f з дуже хорошою гомолітичною відхідною групою в контексті RAFT полімеризації виявилось неможливим через низьку термічну стабільність, ми вирішили синтезувати аналог з третиною 2-ціанопропан-2-іл R-групою за допомогою радикального диспропорціонування біс(тіоацил)дисульфідів, як показано в частині 1.2.7.

Для синтезу вихідних біс(триарилстанілкарбонотіоїл)дисульфідів 2.9 a,b, триарилстананкарбородитіота літію 2.8 a,b, отримані за літературним методом [126] були оброблені йодом в розчинні ТГФ, як показано на схемі 2.3. Після обробки реакційної суміші та очистки продукту реакції за допомогою хроматографії були отримані рожеві кристалічні сполуки. Детальне вивчення ЯМР спектрів дозволило ідентифікувати одну із них як описаний раніше (трифенілстаніл)трифенілстананкарбородитіота 2.7 i [131]. Пізніше структури обох (триарилстаніл)триарилстананкарбородитіотів 2.7 i,j були встановлені за допомогою РСД (рис. 2.4), а також підтвердженні з використанням ЯМР, ІЧ спектроскопії та МСВР (таблиця 2.4).

![Схема 2.3](image)

Схема 2.3

МСВР з хімічною іонізацією дозволила зареєструвати сигнали молекулярного йону для обох сполук. Отримані значення m/z співпадають з розрахованими значеннями, а ізотопні профілі піків підтверджують наявність в їх складі двох атомів стануму.
<table>
<thead>
<tr>
<th>Сполучення</th>
<th>Сигнали ароматичних протонів</th>
<th>Сигнали ароматичних протонів</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H ЯМР</td>
<td>δ<sub>Наpом</sub>, м.ч.</td>
<td>δ<sub>Н/СН3</sub>, м.ч.</td>
</tr>
<tr>
<td></td>
<td>7,00–7,85</td>
<td>---</td>
</tr>
<tr>
<td>13C ЯМР</td>
<td>δ<sub>СS2</sub>, м.ч.</td>
<td>234,1</td>
</tr>
<tr>
<td>119Sn ЯМР</td>
<td>δ<sub>Sn</sub>, м.ч.</td>
<td>-177,3, -105,0</td>
</tr>
<tr>
<td>ІЧ</td>
<td>ν<sub>C=S</sub>, см⁻¹</td>
<td>1038,5</td>
</tr>
<tr>
<td>МСВР</td>
<td>m/z<sub>отр.</sub></td>
<td>777,9904</td>
</tr>
<tr>
<td></td>
<td>m/z<sub>розр.</sub></td>
<td>777,9932</td>
</tr>
</tbody>
</table>

1H ЯМР спектри сполук 2.7 i, j відносно малоінформативні. Так спектр дитіоформіату 2.7 i містить сигнали ароматичних протонів в діапазоні 7..8 м.ч. При цьому незначна різниця в хімічних зсувах <i>ortho</i>- протонів підтверджує нееквівалентність двох SnPh₃ груп. У спектрі сполук 2.7 j різниця в хімічних зсувах ароматичних протонів двох <i>ortho</i>-толостанільних залишків дещо менша, і метильні групи представлені двома псевдотриплетами з КССВ <i>J</i>_{Sn,H} = 2,1 Гц та різницею в хімічних зсувах близько 0,02 м.ч.

Сигнали тіокарбонільних груп в 13C ЯМР значно зсунути в сильне поле в порівнянні зі спектрами алкілтриарілстананкарбодитіоатів. Так в спектрі сполуки 2.7 i цей сигнал має хімічний зсув 234,1 м.ч., тоді як для дитіоестеру 2.7 j його значення складає весь 226,2 м.ч. Подібні зміни можуть бути пояснені значною донорністю триарілстанілсульфанільних замісників.

119Sn ЯМР спектри містять два сигнали — станум Ar₃SnC=S та SSnAr₃ груп. Хімічний зсув першого з них має значення -177,3 і -169,2 м.ч. для сполук 2.7 i та 2.7 j, відповідно. Ці значення також дещо нижчі спостережуваних для алкілтриарілстананкарбодитіоатів. Сигнали триарілстанілсульфанільних груп мають хімічні зсуви -105,0 та -96,9 м.ч. для сполук 2.7 i та 2.7 j, відповідно.

ІЧ спектри містять інтенсивну смугу поглинання подвійного C=S зв'язку з хвильовою частотою близько 1038 см⁻¹.
Отримані сполуки 2.7 i,j кристалізуються в двох різних сингоніях (див. додатки 73–78), але, незважаючи на це, геометрія цих молекул дуже подібна. Основні параметри планарного фрагменту SnCS₂Sn дуже близькі до отриманих для алкілтриарилстананкарбодійотатів 2.7 b-d, f-h, за винятком значно більшої довжини зв’язку S1–Sn2 (2,530(2) Å для 2.7 i та 2,551(3) Å для 2.7 j) та децю меншого кута C1–Sn1–Sn2 (99,9(2) ° для 2.7 i та 98,4(5) ° для 2.7 j в порівнянні з 105,9(2) ° для сполуки 2.7 a). Зменшення цього кута пояснюється внутрішньомолекулярною взаємодією між атомом сульфуру S2 тіокарбонільної групи та атомом стануму Sn2. Відстані Sn2–S2 (3,246 Å для 2.7 i та 3,227 Å для 2.7 j) дуже близькі до середнього арифметичного ковалентного радіуса (2,44 Å) [141] та радіуса Ван дер Ваальса (3,96 Å) [142] взаємодіючих атомів, що вказує на проміжний характер вищезгаданого зв’язку. В роботі [143] наводяться результати РСД для трифенілстаніл-4-метилдитіобензоату TolCS₂SnPh₃ — структурного аналогу сполук 2.7 i,j. Геометричні параметри центрального фрагменту цієї молекули: кут C1–S1–Sn 100,4 ° та відстань S2–Sn 3,207(2) Å дуже близькі до отриманих нами результатів.

Також слід згадати ідентичність геометрії обох “пропелерів” SnAr₃ в межах молекул цих сполук і їх дзеркально-поворотну симетрію. Цей факт сильно ускладнював аналіз результатів РСД та встановлення координат атомів CS₂ фрагменту. До того ж обмеження обертання навколо зв’язку S1–Sn2 теоретично може призводити до появи аксіальної хіральності в подібних сполуках.

Рис. 2.4. Молекулярні структури сполук 2.7 i (ліворуч) та 2.7 j (праворуч) за результатами РСД
Структура сполук 2.7 i,j була також підтверджена за допомогою зустрічного синтезу — шляхом алкілювання солей 2.8 a,b триарилстанілхлоридами 2.5 a,b (схема 2.4). Отримані за допомогою обох методів продукти мають ідентичні спектральні характеристики та фізичні властивості. До того ж, у разі потреби отримання великих кількостей сполук 2.7 i,j, цей метод викликає значно вищий інтерес у зв’язку з кращою відповідністю принципу економії атомів.

Виходячи з високого виходу сполук 2.7 i,j та виключно слідових кількостей гексаарилдистананів, було запропоновано гіпотетичний механізм з проміжним утворенням дисульфідів 2.9. Потім вони перегруповуються в продукти 2.7 i,j через шестичленний перехідний стан, стабілізований координаційним зв’язком Sn-S (схема 2.5). Стабільність зв’язку станум–сульфур слугує рушійною силою для ряду хімічних перетворень, таких як деоксигенування за Бартоном—МакКомбі [144] або перетворення O-(трифенілстаніл)-карбонохлоротіоату в трифенілстанілмеркаптан [145]. Додатковим рушієм перетворення 2.9 a в 2.7 i може слугувати виведення продукту зі сфери реакції, оскільки (трифенілстанил)трифенілстананкарбодитіоат практично не розчинний в більшості розчинників. В той же час його аналог 2.7 j має дуже хорошу розчинність в органічних розчинниках.

ЯМР спектри, а також детальні описи результатів РСД сполук 2.7 i,j наведені в додатках 67–78.
Хоч ці сполуки й не представляють жодного практичного інтересу як RAFT агенти, описане перетворення — дуже цікавий приклад реакційної здатності стануморганічних сполук.

2.2.3. Спроба синтезу (три-\(n\)-толілстаніл)трифенілстананкарбодитіоату

Структурні особливості сполук 2.7 і 2.9, а також суттєві зміни розчинності, залежно від заміщення навколо атома стануму, наштовхнули нас на ідею створення “несиметричного” (три-\(n\)-толілстаніл)трифенілстананкарбодитіоату 2.7 k. Для цього було адаптовано синтетичний підхід наведений на схемі 2.4. Розчин трифенілстананкарбодитіоату літію 2.8 a в ТГФ був проалялікований стехіометричною кількістю три-\(n\)-толілстанілхлориду. Після обробки реакційної суміші був отриманий рожевий кристалічний продукт. Його \(^{119}\)Sn ЯМР спектр містить три сигнали, що разоче відрізняється від очікування для сполуки 2.7 k. Результати РСД (рис. 2.5) розставили все по своїх місцях і дозволили ідентифікувати отриману речовину як ((три-\(n\)-толілстаніл-сульфаніл)(трифенілстаніл)метил)трифенілстананкарбодитіоат 2.10 (схема 2.6).

![Схема 2.6](image)

Структура цієї сполуки була остаточно підтверджена за допомогою ЯМР спектроскопії.

Зокрема, в \(^1\)H ЯМР спектрі чітко видно сигнал “тіоацетального” протону в вигляді синглету з хімічним зсувом 5,12 м.ч., мультиплети ароматичних протонів в області 7,0..7,7 м.ч., а також синглет метильних груп при 2,30 м.ч.

\(^{119}\)Sn ЯМР спектр містить три сигнали з хімічними зсувами -192,3 м.ч. для групи Ph\(_3\)SnC=S, -133,0 м.ч. для другої групи Ph\(_3\)Sn та -38,8 м.ч. для Tol\(_3\)Sn.
Остаточне віднесення сигналів було здійснене за допомогою двовимірного 1H-119Sn HMBC ЯМР експерименту (гетероядерні кореляції через два і більше зв’язків) (рис. 2.6). Він продемонстрував кореляцію всіх трьох атомів стануму з “гіоацетальним” протоном, а також кореляцію атомів стануму Ph$_3$Sn груп з метильними протонами три-н-толілстанільної групи.

Рис. 2.5. Молекулярна структура сполуки 2.10 згідно результатів РСД

Основні параметри фрагменту SnCS$_2$ сполуки 2.10 дуже близькі до отриманих для трифенілстананкарбодійтіоату 2.7 а. Тим не менше значення відстані S1–Sn2 (3,294 Å) наштовхує на думку про взаємодію між цими атомами та утворення п’ятічленного координаційного циклу з конформацією спотвореного конверта. При цьому атом стануму винесений за межі циклу з двогранним кутом 43,6°.
Рис. 2.6. $^1\text{H}-^{119}\text{Sn}$ HMBC для сполуки 2.10

Сполука 2.10 могла утворитися лише в результаті перетворення інтермедіату 2.7 k, утворення якого не викликає жодних сумнівів. Запропонований радикальний механізм наведений на схемі 2.7. На першій стадії відбувається приєднання вільного радикалу до тіокарбонільної групи. Проте утворений третинний радикал розпадається не з утворенням нового дитіоформіату і три(ₙ-толіл)станіл радикалу, а за альтернативним напрямком, який в цілому нагадує гідроліз ацеталей. Сульфур SR групи мігрує до стануму з утворенням нейтрального сульфіду та радикалу 2.11. В подальшому він приєднується до тіокарбонільної групи іншої молекули дитіоформіату 2.7 k з утворенням проміжного радикалу 2.12, який шляхом вилучення гідриду з реакційного середовища перетворюється в кінцевий продукт та новий радикал, що реініціює цей ланцюжок перетворень.
ЯМР спектри, а також детальний опис результатів РСД сполуки 2.10 наведені в додатках 79–83.

Незважаючи на невдачу запланованого синтезу, це несподіване перетворення надало нам надзвичайно цінну інформацію про стабільність третинних станумвмісних радикалів, а також можливі шляхи їх фрагментації.

2.2.4. Взаємодія (трифенілстаніл)трифенілстананкарбодитіоату з алкілбромідами

Оскільки трифенілстаніл радикал має значну стабільність, то можна припустити, що він може бути легко заміщений менш стабільними радикалами як показано в частині 1.2.8. Для цього ми кип'ятили (трифенілстаніл)трифеніл-стананкарбодитіоат в етилацетаті з надлишком АІБН, у ролі джерела 2-ціанопропан-2-іл радикалів (схема 2.8). Проте після повної трансформації вихідної речовини нам не вдалося виявити очікуваного (2-ціанопропан-2-іл)трифеніл-стананкарбодитіоату 2.7 і серед продуктів реакції. Єдине логічне пояснення подібного результату — низька термічна стабільність цільової сполуки в умовах проведення реакції.
Оскільки вищезгаданий підхід виявився невдалим, ми вирішили випробувати метод описаний Саміром Зардом [146]. Він ґрунтується на взаємодії S-трифенілстанілкарбонодитіоатів з алкілбромідами в присутності радикального ініціатора. Нагрівання сполуки 2.7 і в присутності трьох еквівалентів алкілбромідів, таких як 1-бромоетилбензен, бензилбромід або метил-2-бромопропіонат, а також 0,1 екв. АІБН дозволило отримати відповідні трифенілстананкарбодитіоати 2.7 a,b,e з виходами вище 80 % (схема 2.9).

Схема 2.9

Механізм цього перетворення (схема 2.10) включає три основних кроки. Спочатку відбувається обмін 2-цианопропан-2-іл радикалу, утвореного внаслідок термічного розкладу АІБН на трифенілстаніл радикал. Далі він взаємодіє з алкілбромідом з утворенням нового алкіл радикалу та трифенілстанілброміду, який покидає сферу реакції за рахунок утворення стійкого зв’язку Sn–Br. У разі наявності в розчиннику слідової кількості води, трифенілстанілбромід гідролізує з утворенням ди(трифенілстаніл)оксиду. На останній стадії радикал R’ реагує з вихідним дітіоформіатом із утворенням цільового продукту та радикалу Ph₃Sn’, який в подальшому реініціює цей ланцюжок перетворень.

Схема 2.10

Незважаючи на те, що описане перетворення не представляє значного синтетичного інтересу в такому вигляді, воно може служити основою для інших
складніших та привабливіших синтезів. Наприклад, воно може служити для синтезу карбодитіоатів зі складною R-групою за допомогою введення алkenів до реакційної суміші. При цьому механізм перетворення буде доповнений додатковою стадією приєднання радикалу R’ за подвійним зв’язком алкену.

2.3. Термічна стабільність триарилстананкарбодитіоатів

Класичні умови проведення RAFT полімеризації передбачають нагрівання при температурах від 60 °C (термічне ініціювання з АІБН) до 110 °C (термічне автозініціювання полімеризації стирену), а в деяких специфічних випадках і вище. Проте деякі а-заміщені дитіоформіати можуть зазнавати термічної деградації за таких температур. Існує ряд досліджень, в яких їх стабільність вивчалась як за допомогою ab initio розрахунків [147], так і моделних реакцій [148, 149]. Так для більшості сімеїств RAFT агентів (дитіоестери, ксантати, дитіокарбамати та тритіокарбонати) було вивчено механізм і кінетичні параметри термодеструкції, а також вивчено відповідні взаємовідношення структура – стабільність.

Оскільки один із синтезованих нами потенційних RAFT агентів, а саме (ціанометил)трифенілстананкарбодитіоат 2.7 f, виявився нестабільним навіть при кімнатній температурі, ми вирішили вивчити термічну стабільність інших отриманих триарилстананкарбодитіоатів. Для цього було запропоновано нагрівання в розчині з ЯМР контролем конверсії досліджуваної речовини. Задля зручності реакцію проводили в герметичних ампулах Уїлмада для високого тиску з тефлоновим голковим краном. В якості модельного розчинника було обрано толуен–d₈, завдяки його хімічній інертності та високій температурі кипіння. До того ж один із недоліків цього розчинника було його перевагою. Цей розчинник завжди містить довгу кількість толуену–d₈ і, відповідно, в його ¹H ЯМР спектрі завжди спостерігається квінтет протону C₆D₃CD₂H з хімічним зсувом 2.09 м.ч. Оскільки концентрація цієї домішки не змінюється з часом, то її
можна використовувати як внутрішній стандарт для відслідковування зміни концентрації інших речовин у розчині.

Для кожної речовини були приготовані три ампули з 0,1 М розчином для нагрівання при трьох різних температурах — 60, 85 та 110 °C. Кожну з них дегазували за допомогою трьох циклів заморозка–вакуум–відтавання і герметизували під атмосферою аргону. Підготовлену ампулу нагрівали в термостатованій масляній бані при заданій температурі. Через певні проміжки часу реакція переривалась шляхом заморожування реакційної суміші в рідкому азоті і проводився запис 1H та 119Sn ЯМР спектрів. Потім нагрівання продовжувалося. Після повного розкладу вихідної сполуки реакційну суміш додатково аналізували за допомогою мас-спектрометрії.

Протягом нагрівання спостерігалось поступове ослаблення інтенсивності рожевого забарвлення з утворенням у кінці жовтого розчину з незначним налььотом на стінках ампули. Така зміна кольору однозначно вказує на деградацію CS$_2$ фрагменту з утворенням слабозабарвлених продуктів.

Дослідження було поділене на три частини. Спочатку були визначені кінетичні параметри цієї реакції за допомогою 1H ЯМР спектроскопії, в той час як для ідентифікації продуктів реакції та вивчення механізму реакції було додатково використано результати 119Sn та 19F ЯМР, а також мас-спектрометрії.

2.3.1. Вивчення кінетики термічної деструкції

Задля зручності всі отримані нами алкілтриарилстананкарбодитіоати були поділені на дві групи за їх структурною подібністю:

1) Трифенілстананкарбодитіоати 2.7 a-e;
2) Три(n-толіл)стананкарбодитіоати 2.7 g,h.

Для визначення концентрації було використано зміну інтегральної інтенсивності метиленових або метинових протонів. Отримані значення були нормалізовані з використанням сигналу толуену-d_7. Проте для сполук 2.7 g,h довелося використовувати інший внутрішній стандарт, оскільки їх спектри
містять інтенсивний синглет протонів метильних груп в області 2,10 м.ч. Тому ми були вимушенні додавати незначну кількість 1,4-диметоксибензену в ролі внутрішнього стандарту. Додатково для сполуки 2.7 d були використані результати 19F ЯМР з внутрішньою нормалізацією інтегральної інтенсивності. Вони співпадають з результатами отриманими за допомогою використання внутрішнього стандарту для 1H ЯМР, що додатково підтвердило прийнятність нашого методу.

Для кожної зі сполук 2.7 a-e,g,h було зареєстровано мінімум чотири 1H ЯМР спектри для трьох різних температур. Значення концентрацій, отримані за їх допомогою, дозволили побудувати відповідні кінетичні криві. Їх лінійність у напівлогарифмічних координатах показала, що це реакція першого порядку. Як було сказано вище, досліджувані речовини були об’єднані в дві групи, які вивчались окремо. На рис. 2.7–2.9 наведені кінетичні криві в напівлогарифмічних координатах для термічного розкладу сполук 2.7 a-e при трьох різних температурах. Константи швидкості усіх цих п’ятнадцяти реакцій, отримані за допомогою МНК аналізу, перераховані в таблиці 2.5. Ці дані дозволили побудувати графіки Арреніуса в напівлогарифмічних координатах (рис. 2.10) та оцінити за допомогою МНК значення енергій активації E_A та передлогарифмічних коефіцієнтів A (таблиця 2.5).

Рис. 2.7. Кінетичні криві розкладу сполук 2.7 a-e при 60°C
Рис. 2.8. Кінетичні криві розкладу сполук 2.7 a-e при 85°C
Рис. 2.9. Кінетичні криві розкладу сполук 2.7 а-е при 110°C

Рис. 2.10. Графіки Арреніуса для розкладу сполук 2.7 а-е

Рис. 2.11. Кінетичні криві розкладу сполук 2.7 г,і при 60°C

Рис. 2.12. Кінетичні криві розкладу сполук 2.7 г,і при 85°C

Рис. 2.13. Кінетичні криві розкладу сполук 2.7 г,і при 110°C

Рис. 2.14. Графіки Арреніуса для розкладу сполук 2.7 г,і
Аналогічно кінетичні криві термічної деградації три-\(n\)-толілстананкарбодитіоатів 2.7 г,\(h\) наводяться на рис. 2.11–2.13. Значення констант швидкостей, отримані за допомогою їх лінеаризації, перераховані в таблиці 2.5. На рис. 2.14 наведені графіки Арреніуса за отриманими результатами, а обчислені з них енергії активації та передекспоненційні коефіцієнти — в таблиці 2.5.

Таблиця 2.5

<table>
<thead>
<tr>
<th>сполука</th>
<th>(k) (60\text{°C}, \text{c}^{-1})</th>
<th>(k) (85\text{°C}, \text{c}^{-1})</th>
<th>(k) (110\text{°C}, \text{c}^{-1})</th>
<th>(E_A, \text{kДж/моль})</th>
<th>(A, \text{c}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 (a)</td>
<td>2,98·10^{-6}</td>
<td>19,0·10^{-6}</td>
<td>79,8·10^{-6}</td>
<td>69,907</td>
<td>2,80·10^{5}</td>
</tr>
<tr>
<td>2.7 (b)</td>
<td>4,27·10^{-6}</td>
<td>22,8·10^{-6}</td>
<td>106·10^{-6}</td>
<td>67,639</td>
<td>1,73·10^{4}</td>
</tr>
<tr>
<td>2.7 (c)</td>
<td>2,60·10^{-6}</td>
<td>14,5·10^{-6}</td>
<td>89,1·10^{-6}</td>
<td>74,876</td>
<td>1,35·10^{6}</td>
</tr>
<tr>
<td>2.7 (d)</td>
<td>2,65·10^{-6}</td>
<td>12,1·10^{-6}</td>
<td>62,6·10^{-6}</td>
<td>66,929</td>
<td>7,84·10^{4}</td>
</tr>
<tr>
<td>2.7 (e)</td>
<td>3,83·10^{-6}</td>
<td>27,4·10^{-6}</td>
<td>72,1·10^{-6}</td>
<td>62,654</td>
<td>2,89·10^{4}</td>
</tr>
<tr>
<td>2.7 (f)</td>
<td>2,12·10^{-6}</td>
<td>8,93·10^{-6}</td>
<td>67,0·10^{-6}</td>
<td>72,883</td>
<td>5,00·10^{5}</td>
</tr>
<tr>
<td>2.7 (h)</td>
<td>3,45·10^{-6}</td>
<td>11,8·10^{-6}</td>
<td>166·10^{-6}</td>
<td>81,386</td>
<td>1,54·10^{7}</td>
</tr>
</tbody>
</table>

Рис. 2.15. Енергія активації термодеструкції сполук 2.7 a-e,\(g,h\)

Рис. 2.16. Час напіврозкладу сполук 2.7 a-e,\(g,h\) при 60\text{°C}

На рис. 2.15 наводяться енергії активації термічної деструкції сполук 2.7 a-e,\(g,h\). Для всіх цих сполук вони мають дуже близькі значення, проте можна виділити деякі незначні відхилення. Так, найменшу енергію активації має деградація сполуки 2.7 e з аліфатичною R групою. Серед сполук з різними
бензильними R групами 2.7 a-e найвище значення Еₐ має (4-нітробензил)трифенілстананкарбодитіоат 2.7 c. У той же час було виявлено, що три-n-толілстананкарбодитіоати 2.7 g,h мають децю вищі енергії активації, аніж аналогічні трифенілстананкарбодитіоати 2.7 a,b. Тим не менше, порівняння значень саме цього кінетичного параметру виявляється недостатньо наочним.

Набагато інформативніше представлення — порівняння часів напіврозкладу усіх семи сполук при певній температурі, наприклад при 60°C (рис. 2.16). Така температура використовується для проведення полімеризації найчастіше, оскільки вона відповідає оптимальним умовам роботи АІБН. Одразу впадає в очі суттєва різниця між сполуками з первиною і вторинною радикальною відхідною групою R. Так, час напіврозкладу бензилтрифенілстананкарбодитіоату 2.7 a майже в півтора рази більший, ніж для його аналогу 2.7 b з 1-фенілбензильним замісником. Це дозволяє дійти до висновку, що виявлені відмінності визначаються різницею в стабільністі і реакційній здатності R-радикалів, які утворюються протягом термічної деструкції. В той же час досить несподіваним виявляється ефект введення електроноакцепторних замісників у четверте положення бензильної групи — всупереч очікуванню вони підвищують стабільність відповідних бензилтрифенілстананкарбодитіоатів 2.7 c-d.

Додатково, при переході від трифенілстананкарбодитіоатів до три-n-толілстананкарбодитіоатів зростає стабільність сполук як з первиною так і вториною R-групою. Таким чином, уведення електронодонорних замісників до арильних груп триарилстананкарбодитіоатів сприяє підвищенню їх термічної стабільність — заміна гідрогену в четвертому положенні фенільної групи на метил збільшує час напіврозкладу відповідних сполук на 30–40 %.

Оскільки для досягнення задовільного ступеня контролю над RAFT полімеризацією мінімальна кількість полімерних ланцюгів має містити дитіоформіат ω-кінцеву групу, то куди більший інтерес представляє час, за який залишиться 90 % від вихідної кількості RAFT агенту: \(\tau_{90\%} = \frac{\ln 1.11}{k} \). Результати цього розрахунку наведені на рис. 2.17. Так, для сполук 2.7 b та 2.7 e, які імітують полістирен та поліметилакрилат, відповідно, час розпаду 10 %
вихідної кількості складає близько 6 год. Саме це значення буде лімітуючим, оскільки навіть стабільніші RAFT агенти з бензильними R групами перетворюватимуться в макро-RAFT агенти іще на початковому етапі полімеризації. Це означає, що задля досягнення оптимальних результатів, полімеризація має тривати не більше 6 год. Інший шлях подолання цієї проблеми — зниження температури проведення реакції. Спрогнозовані для 50 °С значення \(\tau_{90\%} \) наведені на рис. 2.18. Як бачимо, згідно з принципом Вант-Гоффа, зменшення температури реакційного середовища на 10 °С веде до зменшення швидкості розкладу в два-три рази.

<table>
<thead>
<tr>
<th>2.7 a</th>
<th>2.7 b</th>
<th>2.7 c</th>
<th>2.7 d</th>
<th>2.7 e</th>
<th>2.7 g</th>
<th>2.7 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8</td>
<td>11.3</td>
<td>11.0</td>
<td>13.8</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 2.17. \(\tau_{90\%} \) для сполук 2.7 a-e,g,h при 60 °C

Рис. 2.18. \(\tau_{90\%} \) для сполук 2.7 a-e,g,h при 50 °C

Таким чином, задля обходу такої потенційної вразливості синтезованих триарилстананкарбодитіоатів, їх слід використовувати переважно для полімеризації високореакційноздатних мономерів або проводити полімеризацію при якомога нижчих температурах.

2.3.1. Ідентифікація продуктів термічної деструкції

Для вивчення можливого механізму реакції термічної деградації, окрім згаданого вище \(^1\)H ЯМР, був використаний \(^{119}\)Sn ЯМР, а для ідентифікації продуктів розкладу сполуки 2.7 d також були залучені ГХ-МС та \(^{19}\)F ЯМР.
Найбільше інформації було зібрано для трифенілстананкарбодііотів 2.7 а-е, тому ми в першу чергу зосередимося на розгляді їх спектрів.

Рис. 2.19. Еволюція 1H ЯМР спектру при нагріванні сполуки 2.7 а (110 °C)

Вивчення еволюції 1H ЯМР спектрів отриманих при нагріванні трифенілстананкарбодііотів при 110 °C дозволяє виявити ряд ключових особливостей. Одночасно зі зменшенням інтенсивностей сигналів вихідних сполук зростає інтенсивність нових піків. Розглянемо дане перетворення на прикладі сполуки 2.7 а (рис. 2.19). Нагрівання супроводжується постуровим послабленням сигналів протонів метиленової групи при 4,43 м.ч. При цьому виникає ряд сигналів у сильному полі, найінтенсивніший з яких має хімічний зсув 3,73 м.ч. Значення КССВ протон–станум зростає протягом цього перетворення ($J_{Sn,H} = 39,1$ Гц для псевдотриплету при 3,73 м.ч. проти $J_{Sn,H} = 4,3$ Гц для сигналу при 4,43 м.ч.). Така зміна вказує на скорочення відстані між бензильними протонами та станумом. Додатково сигнали ortho-протонів трифенілстанільної групи також зсуваються в сильне поле. Вивчення літературних даних [150] дозволило виявити спектральні характеристики
(бензилсульфаніл)трифенілстанану 2.13 і співставити їх зі спектрами на рис. 2.19, що дозволило ідентифікувати його як продукт розкладу з хімічним зсувом метиленових протонів 3,73 м.ч. Аналогічні зміни спостерігаються і в \(^1\)Н ЯМР спектрах інших реакційних сумішей. Таким чином, ці результати дозволяють ідентифікувати один із продуктів розкладу як \(\text{Ph}_3\text{SnSR}\).

На рис. 2.20 наведені \(^{119}\)Sn ЯМР спектри, отримані під час нагрівання сполуки 2.7 а при 110 °C. Зменшення інтенсивності сигналу стануму вихідного бензилтрифенілстананкарбодитіоату при -191 м.ч. супроводжується появою та зростанням інтенсивності двох нових сигналів з хімічними зсувами -51,6 та -52,7 м.ч., відповідно. Один із цих сигналів належить вищеозгаданому (бензилсульфаніл)трифенілстанану 2.13, тоді як інший може належати біс(трифенілстаніл)сульфіду 2.14 [151]. Задля підтвердження наших припущень, а також однозначного віднесення цих сигналів, обидва сульфіди були синтезовані в ролі модельних сполук (схема 2.11).

Рис. 2.20. Еволюція \(^{119}\)Sn ЯМР спектру при нагріванні сполуки 2.7 а (110 °C)
Отримані для них 119Sn ЯМР спектри були співставлені зі спектрами продуктів розкладу заміщених бензилтрифенілстананкарбодитіоатів 2.7 a-d, як показано на рис. 2.21.

Рис. 2.21. Порівняння 119Sn ЯМР спектрів продуктів розкладу трифеніл-стананкарбодитіоатів 2.7 a-d та модельних сполук 2.13 та 2.14

Таким чином, ЯМР на ядрах стануму дозволив нам ідентифікувати два основні оловоорганічні продукти термічної деградації — симетричний біс(трифеніл-станіл)сульфід 2.14 та (алкілсульфаніл)трифенілстанан, відповідно до структури вихідних трифенілстананкарбодитіоатів 2.7 a-d. При цьому оцінка інтенсивності відповідних сигналів у спектрах дозволяє говорити про співвідношення кількостей симетричного та несиметричного сульфідів 1:4.
Якщо ^{119}Sn ЯМР показує виключно шлях перетворення трифенілстанільної групи, то ^{19}F ЯМР дозволяє визначити основні шляхи перетворення 4-флуоробензильної групи при термічній деструкції сполуки 2.7 d. Рис. 2.22 демонструє появу одного інтенсивного сигналу при -116,9 м.ч. та двох слабкіших (в п’ять разів) сигналів з хімічними зсувами -114,5 та -116,3 м.ч. Таким чином, можна зробити висновок, що основний напрямок перетворення 4-флуоробензильної групи — (4-флуоробензилсульфаніл)трифенілстанан.

Рис. 2.22. Еволюція ^{19}F ЯМР спектру при нагріванні сполуки 2.7 d (110 °C)

Склад суміші продуктів термічного розкладу (4-флуоробензил)трифенілстананкарбодитіоату 2.7 d при усіх трьох температурах був також встановлений за допомогою ГХ-МС. Виявилося, що природа продуктів та їх кількісні співвідношення практично не залежать від температури нагрівання. На схемі 2.12 наведена узагальнена реакція розкладу алкілтрифенілстананкарбодитіоатів з переліком усіх виявлених продуктів розкладу в порядку зменшення їх частки в реакційній суміші.
Схема 2.12

Таким чином, використання ЯМР спектроскопії та мас-спектрометрії дозволило нам встановити структури основних продуктів термічного розкладу алкілтриарилстананкарбодитіоатів. Наш метод має ряд безсумнівних переваг над класичними підходами до вивчення подібних перетворень. Так, вся експериментальна інформація, включаючи кінетичні параметри, була зібрана з використанням всього трьох ЯМР ампул для кожної сполук. Широке використання напів-онлайн ЯМР значно скоротило кількість необхідних операцій і відкинуло необхідність втручання до ізольованої реакційної суміші. Оскільки ЯМР зберігає пробу в вихідному стані, то він дозволяє проводити мас-спектрометричне дослідження реакційних сумішей без додаткових витрат досліджуваної речовини. При цьому вони склали менше 100 мг для кожної з речовин. Використання герметичної ампули також забезпечує захист реакційної суміші від атмосферного кисню і збереження летючих продуктів реакції.

2.3.3. Обговорення механізму термічної деструкції

Ідентифікація основних продуктів термічного розкладу алкілтрифеніл-стананкарбодитіоатів дозволила зробити висновок про радикальний механізм цього перетворення. Всі ключові перетворення систематизовані на схемі 2.13. Перелік ключових продуктів, наведений на схемі 2.12 вказує на природу ключових радикалів, які мають значення в цьому перетворенні. Так, можна впевнено зазначити про те, що в реакційній суміші присутні Ph₃Sn⁺, RS⁺, R⁺ та 'C(S)SR. У той же час немає жодних доказів утворення Ph₃SnS⁺.

Ми вважаємо, що на першій стадії відбувається гомолітичний розрив зв’язку карбон-станум вихідного алкілтрифенілстананкарбодитіоату. Лише таким перетворенням можна пояснити утворення радикалу 2.15, без якого неможливо уявити утворення дитіоестерів. Далі більшість радикалів 2.15
зазнають подальшого відщеплення моносульфіду карбону. Як відомо, він нестійкий в індивідуальному стані і негайно полімеризується. В подальшому, утворений на першій стадії трифенілстаніл радикал приєднується до тіокарбонільної групи вихідного дитіоформіату з утворенням радикалу 2.16. Він може розпадатися за аналогією до механізму RAFT полімеризації з утворенням радикалу R' та (трифенілстаніл)трифенілстананкарбодійату 2.7 і.

![chematic image]

Схема 2.13

Найцікавіші трансформації відбуваються на третій та четвертій стадіях. Так, радикал 2.16 може втрачати молекулу (алкілсульфаніл)трифенілстанану з утворенням трифенілстанілтіоацил радикалу 2.17. Останній в подальшому відщеплює молекулу моносульфіду карбону, причому утворюється трифенілстаніл радикал, який в подальшому замикає ланцюгову реакцію.
Ключовий елемент цього перетворення — фрагментація радикалу 2.16 з утворенням (алкілсульфаніл)трифенілстанану нагадує перетворення, показане на схемі 2.7. Його деталізований механізм наводиться на схемі 2.14.

Описане перетворення схоже на механізм гідролізу тіоацеталей. Неподілена електронна пара сульфуру атакує атом стануму в радикалі 2.16 за механізмом S_N i з утворенням молекули (алкілсульфаніл)трифенілстанану та радикалу 2.17. Аналігічно, радикал 2.18, утворений внаслідок приєднання трифенілстаніл радикалу до сполучки 2.7 і, також розпадається на радикал 2.17 та біс(трифенілістаніл)сульфід 2.14. Оскільки ймовірність утворення радикалу 2.18 нижча, ніж радикалу 2.16, це пояснює співвідношення кількостей стануморганічних продуктів реакції.

На останніх стадіях відбувається рекомбінація вільних радикалів утворених протягом реакції. При цьому утворюються діалкілсульфіди, діалкілдисульфіди та дитіоестери, які не могли утворитися протягом кроків 1–4. На цій стадії також можуть утворюватись додаткові кількості (алкілсульфаніл)трифенілстананів.

Таким чином, окрім кінетичних параметрів та продуктів термічного розкладу алкілтриарилстананкарбодітіоатів, ми висунули гіпотезу про можливий механізм цього перетворення. Він докорінно відрізняється від механізму встановленого для термолізу класичних RAFT агентів [148, 149], що пояснюється особливостями стануморганічної хімії.

2.4. Термічна стабільність фосфорилметандітіоатів

Зіткнувшись з проблемою термічної деградації алкілтриарилстананкарбодітіоатів, ми вирішили оцінити також стійкість синтезованих нами фосфорилметандітіоатів. Для цього їх нагрівали в розчині дейтерованого
бензену при 60 °C з реєстрацією 31P ЯМР спектрів кожні 24 год. Після чотирьох днів нагрівання (96 год) не було виявлено жодних ознак розкладу. Оскільки цього часу цілком достатньо для полімеризації навіть таких малореакційних мономерів як стирен, це дозволяє зробити висновок, що ці сполуки мають бути цілком стабільні в умовах RAFT полімеризації. Виходячи з цього, подальші дослідження термічної стабільності при вищих температурах та часах нагрівання не проводились.

2.5. Висновки до розділу 2

Таким чином, нами було синтезовано ряд з дванадцяти нових фосфорорганічних та стануморганічних RAFT агентів, з підтверженням їх будови за допомогою 1H, 13C, 31P, і 119Sn ЯМР, ІЧ спектроскопії та МСВР. Структури одинадцяти синтезованих сполук були встановлені за допомогою РСД їх монокристалів.

Фосфорилметандітіоати були отримані з використанням оптимізованого літературного методу. При цьому їх виходи визначаються структурою вихідного фосфіноксиду, а саме їх кислотністю: в разі використання діамінофосфіноксидів вихід значно вищий, аніж для діалкіл- та діарилфосфіноксидів.

Літературний метод синтезу триарилстананкарбодітіоатів був вдосконалений за допомогою використання нафталенідом натрію. Це дозволило значно скоротити час реакції, а також підвищити вихід та чистоту цільових продуктів за рахунок ерадикації побічних реакцій.

Встановлено характеристичні особливості ЯМР спектрів синтезованих фосфорилметандітіоатів та триарилстананкарбодітіоатів, які можуть служити критеріями доведення їх будови. Виявлене значення хімічного зсуву тіокарбонільної групи в 13C ЯМР спектрах алкілтриарилстананкарбодітіоатів виходить за межі загальноприйнятої шкали 0–250 м.ч. і складає 265 м.ч.

Були виявлені деякі нові незвичайні перетворення стануморганічних сполук, а саме фрагментация біс(триарилстанілкарбонотіоїл)дисульфідів з
утворенням (триарилстаніл)триарилстананкарбодитіоатів та радикальна димеризація (три-н-толілстаніл)трифенілстананкарбодитіоату. Запропоновані можливі механізми цих перетворень.

Досліджена термічна стабільність алкілтриарилстананкарбодитіоатів з встановленням основних кінетичних параметрів, а також продуктів реакції їх розкладу. Для цього було використано оригінальний експериментальний підхід з широким використанням гетероядерного ЯМР та ГХ-МС для кількісного та якісного аналізу. Використання герметичної ампули Уїлмада в ролі реактора та дейтерованого розчинника дозволило значно скоротити витрату часу та матеріальних ресурсів, а також підвищити зручність та безпечність дослідження в порівнянні з класичними методами з хроматографічним або спектрофотометричним визначенням концентрацій.

На основі зібраних результатів запропоновано можливий механізм термічної деградації. Він суттєво відрізняється від описаних механізмів термічної деградації загальновживаних RAFT агентів внаслідок специфічності стануморганічної хімії. Два основні продукти термічної деградації — (акілсульфаніл)трифенілстанан та біс(трифенілстаніл)сульфід.

Час рокладу 10 % від вихідної кількості складає від 6,7 до 13,8 год при 60 °C. Швидкість реакції зменшується у 2–2,5 рази зі зниженням температури на 10 °C. Стабільність підвищується з переходом від вторинних до первинних алкілтриарилстананкарбодитіоатів. На стабільність також позитивно впливає введення електроноакцепторних замісників до R групи, а також електронодонорних до триарилстанільної групи.

Для мінімалізації побічних реакцій викликаних термічною деструкцією синтезованих алкілтриарилстананкарбодитіоатів, їх слід використовувати переважно для дуже швидких полімеризацій або проводити полімеризацію при якомога нижчих температурах.
РОЗДІЛ 3
ЕФЕКТИВНІСТЬ НОВИХ RAFT АГЕНТІВ У РАДИКАЛЬНІЙ ПОЛІМЕРИЗАЦІЇ

Оскільки ми ставили собі за мету синтезувати нові агенти передачі ланцюга, то логічним продовженням нашого дослідження стало випробування їхньої ефективності в RAFT полімеризації. Для цього ми скористалися методологією наведеною в роботі Ролана Жажа [133] з поступовим її вдосконаленням протягом усіх трьох років підготовки дисертаційної роботи.

Класичний метод тестування ефективності RAFT агентів можна описати таким чином. Спочатку готують основний розчин, який містить мономер, розчинник (за потреби), RAFT агент та ініціатор. При цьому кількість реагентів визначають з точністю ±0,1 мг для точного розрахунку теоретичної молярної маси для конкретної конверсії мономеру. Потім по 1 мл отриманого розчину вносять в п’ять або десять скляних ампул об’ємом 2 мл. Розчини в підготовлених ампулах дегазують за допомогою трьох циклів заморозування–вакуумування–відтавання та запаюють під вакуумом. Загерметизовані таким чином ампули в подальшому нагрівають у масляній бані або алюмінієвому блоку, термостатованих при заданій температурі ±1 °C протягом заданого часу. Потім полімеризацію обривають шляхом заморозування реакційної суміші в рідкому азоті, ампулу розкривають і аналізують її вміст за допомогою ЯМР для визначення конверсії мономеру та ГПХ для визначення молярної маси та дисперсності отриманих зразків.

Вдосконаленій нами метод передбачає проведення реакції в ЯМР ампулах з використанням дейтерованих розчинників. Основний розчин дегазують за допомогою трьох циклів заморозування–вакуумування–відтавання в 10 мл ампулі Шленка оснащений голчатим тефлоновим краном. Потім отриманий розчин розфасовують у глубокі з аргоновою атмосферою в звичайні ЯМР ампули (по 0,7 мл в кожну) і герметизують кожну з них гумовою пробкою та парафіновою стрічкою. Такий підхід дозволяє отримувати ¹H, ³¹P та ¹¹⁹Sn ЯМР
спектри високої якості для реакційних сумішей в напів-онлайн режимі, а також значно скоротити затрати часу та матеріальних ресурсів і здійснювати велику кількість експериментів у потоковому режимі.

Всі полімеризаційні тести поділені на дві великі частини залежно від природи відповідних RAFT агентів.

3.1. Полімеризації за участю фосфорилметандітіоатів

3.1.1. Полімеризації в класичних умовах

Спершу ми вирішили оцінити межі застосування синтезованих нами фосфорорганічних регуляторів радикальної полімеризації. Для цієї мети репрезентабельним RAFT агентом був обраний (1-фенілетил)(бісу(N,N-діізо-пропіламіно)фосфорил)метандітіоат 2.4 b. В його присутності було проведено полімеризацію St, BA, EHA та TOA в запаяних ампулах при 60 °C. В якості ініціатора було використано АІБН, а розчинника — толуен для стирену та акрилатів, і 1,4-діоксан для TOA.

Концентрації реагентів для всіх п’яти серій полімеризаційних випробувань наведені в таблиці 3.1. Вони відтворюють умови описані в роботі [133] для RAFT полімеризації за участю раніше описаних фосфорилметандітіоатів.

Таблиця 3.1

<table>
<thead>
<tr>
<th>Концентрації реагентів для полімеризацій 1–25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Експерименти</td>
</tr>
<tr>
<td>Мономер (М)</td>
</tr>
<tr>
<td>[M]₀, М</td>
</tr>
<tr>
<td>[2.4 b]₀, мМ</td>
</tr>
<tr>
<td>[АІБН]₀, мМ</td>
</tr>
</tbody>
</table>
На схемі 3.1 наведено узагальнене представлення цих полімеризацій.

![Схема 3.1](image)

Схема 3.1

Конверсія мономеру визначається за відношенням миттєвої концентрації мономеру до його вихідної концентрації (конв. = n/m). Знаючи це значення можна оцінити теоретичне значення молярної маси $M_{n, теор}$ за формуллю, яка включає початкові концентрації та молярні маси мономеру та RAFT агенту:

$$M_{n, теор} = \frac{[M]_0 \cdot \text{конв.} \cdot M_М + M_{CTA}}{[CTA]_0}$$

Для визначення конверсії мономеру нами було використано 1H ЯМР спектроскопію. При цьому порівнювалися інтенсивності сигналів протонів вінілової групи непрореагованого мономеру та бокового ланцюга мономерних ланок, який зазвичай залишається незмінним протягом полімеризації. Цей метод дозволяє отримати високу точність результатів і володіє значно вищою універсальністю в порівнянні з класичним гравіметричним методом.

У цілому результати проведених випробувань (таблиця 3.2) виявилися аналогічними до отриманих для полімеризацій за участю (1-фенілетил)(біс(N,N-діізопропіламіно)фосфоротійл)метандитіоату [133] в таких же умовах. Цей факт пояснюється близькими значеннями електронних ефектів оксигену та сульфуру, зв’язаних з фосфором. Як наслідок, заміна фрагменту P=S на P=O має мінімальний вплив на реакційну здатність відповідних RAFT агентів.

Полімеризація стирилу (експерименти 1–5) дозволила отримати полімери з високим ступенем контролю над молярною масою та низькою дисперсністю (рис. 3.1). Середньочислова молярна маса зростає лінійно з високим ступенем кореляції з теоретично передбаченими значеннями. Дисперсність має досить низькі значення і постулює зростає протягом полімеризації, досягаючи максимального значення 1,16. ГПХ (рис. 3.2) демонструє мономодальний ММР
утворених полімерних зразків з чітким зміщенням в область вищих гідродинамічних об’ємів у ході полімеризації.

Таблиця 3.2

Результати отримані в ході полімеризації 1-25

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>M_n теор, кДа</th>
<th>M_n, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,1</td>
<td>8 %</td>
<td>2,79</td>
<td>3,16</td>
<td>1,10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>17 %</td>
<td>5,44</td>
<td>6,20</td>
<td>1,08</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>31 %</td>
<td>9,57</td>
<td>10,36</td>
<td>1,12</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>55 %</td>
<td>16,65</td>
<td>17,41</td>
<td>1,16</td>
</tr>
<tr>
<td>5</td>
<td>93,3</td>
<td>75 %</td>
<td>22,55</td>
<td>20,29</td>
<td>1,16</td>
</tr>
<tr>
<td>6</td>
<td>0,6</td>
<td>8 %</td>
<td>1,44</td>
<td>1,54</td>
<td>1,28</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>28 %</td>
<td>3,98</td>
<td>4,78</td>
<td>1,19</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>63 %</td>
<td>8,43</td>
<td>10,76</td>
<td>1,15</td>
</tr>
<tr>
<td>9</td>
<td>3,35</td>
<td>82 %</td>
<td>10,84</td>
<td>12,96</td>
<td>1,24</td>
</tr>
<tr>
<td>10</td>
<td>6,25</td>
<td>95 %</td>
<td>12,49</td>
<td>15,02</td>
<td>1,28</td>
</tr>
<tr>
<td>11</td>
<td>0,6</td>
<td>9 %</td>
<td>3,97</td>
<td>4,56</td>
<td>1,48</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>29 %</td>
<td>11,84</td>
<td>13,86</td>
<td>1,34</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>53 %</td>
<td>21,28</td>
<td>25,63</td>
<td>1,25</td>
</tr>
<tr>
<td>14</td>
<td>3,3</td>
<td>72 %</td>
<td>28,75</td>
<td>31,12</td>
<td>1,27</td>
</tr>
<tr>
<td>15</td>
<td>6,25</td>
<td>89 %</td>
<td>35,44</td>
<td>33,18</td>
<td>1,37</td>
</tr>
<tr>
<td>16</td>
<td>0,60</td>
<td>31 %</td>
<td>17,88</td>
<td>19,48</td>
<td>1,57</td>
</tr>
<tr>
<td>17</td>
<td>0,83</td>
<td>48 %</td>
<td>27,46</td>
<td>30,78</td>
<td>1,40</td>
</tr>
<tr>
<td>18</td>
<td>1,10</td>
<td>63 %</td>
<td>35,90</td>
<td>38,51</td>
<td>1,38</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>81 %</td>
<td>46,04</td>
<td>52,41</td>
<td>1,30</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>90 %</td>
<td>51,10</td>
<td>56,20</td>
<td>1,36</td>
</tr>
<tr>
<td>21</td>
<td>3,25</td>
<td>11 %</td>
<td>4,23</td>
<td>5,29</td>
<td>1,48</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>44 %</td>
<td>15,35</td>
<td>16,87</td>
<td>1,31</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>64 %</td>
<td>21,96</td>
<td>21,55</td>
<td>1,44</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>80 %</td>
<td>27,39</td>
<td>29,19</td>
<td>1,44</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>92 %</td>
<td>31,53</td>
<td>33,41</td>
<td>1,36</td>
</tr>
</tbody>
</table>
Рис. 3.1. Еволюція M_n та D в ході полімеризації St (експ. 1–5)

Рис. 3.2. Суперпозиція хроматограм PSt зразків (експ. 1–5)

Зразки PBA отримані в експериментах 6–15 також характеризуються низькими дисперсностями (рис. 3.3–3.4), причому, в разі використання більшої кількості RAFT агенту, отримані дещо нижчі значення дисперсностей. Молекулярні маси утворених полімерів дещо вищі, аніж теоретично передбачені, але тим не менше вони зростають лінійно зі збільшенням конверсії мономеру.

ГПХ (рис. 3.5–3.6) вказує на мономодальну природу отриманих зразків, проте спостерігається утворення незначних “хвостів” у хроматограмах зразків із високою конверсією мономеру.

Рис. 3.3. Еволюція M_n та D в ході полімеризації BA (експ. 6–10)

Рис. 3.4. Еволюція M_n та D в ході полімеризації BA (експ. 11–15)
Рис. 3.5. Суперпозиція хроматограм РВА зразків (експ. 6–10)
Рис. 3.6. Суперпозиція хроматограм РВА зразків (експ. 11–15)

Результати полімеризації 2-етилгексилакрилату (експерименти 16–20) дуже схожі на отримані для ВА (рис. 3.7). Так, молярна маса зростає лінійно в ході полімеризації, а її значення близькі до теоретично передбачених. Тим не менше, в цьому разі спостерігаються значно вищі значення дисперсності, що пояснюється в першу чергу характерною для ЕНА передачею ланцюга на мономер. Це супроводжується розширенням піків зі зростанням конверсії мономеру та утворенням “хвостів” на хроматограмах (рис. 3.8).

Рис. 3.7. Еволюція M_n та D в ході полімеризації ЕНА (експ. 16–20)
Рис. 3.8. Суперпозиція хроматограм РЕНА зразків (експ. 16–20)

При досягненні високих конверсій обох акрилатів спостерігається поступове “вицвітання” рожевого забарвлення RAFT агенту. Єдине прийнятне
пояснення цього феномену — деградація забарвленого метандіоатного фрагменту в ході полімеризації.

Нарешті, при полімеризації гідрофобного акриламіду TOA, було отримано одні з найкращих результатів (eksperimenti 21–25). Індукційний період тривав близько 3 год, після чого починалась дуже швидка полімеризація з досягненням 90 % конверсії мономеру всього за 5 год після початку реакції. Утворені полімери характеризуються винятково хорошим контролем над молярною масою і досить низькою дисперсністю (рис. 3.9). ГПХ (рис. 3.10) демонструє мономодальний ММР для всіх отриманих полімерних зразків без будь-яких ознак побічних реакцій.

[Diagram]

Рис. 3.9. Еволюція M_n та D в ході полімеризації TOA (експ. 21–25)

Рис. 3.10. Суперпозиція хроматограм РТОА зразків (експ. 21–25)

3.1.2. Полімеризації з напів-онлайн 1H та $^{31}_P$ ЯМР моніторингом

Отримавши вищеописані результати, ми вирішили дослідити полімеризацію стирену та бутилакрилату за участю шести RAFT агентів 2.4 a-f і порівняти реакційну здатність цих сполук. Для цього ми залучили, окрім ГПХ, ще й напів-онлайн 1H та $^{31}_P$ ЯМР, що дозволило вибачувати деталізовані кінетичні криві та відслідкувати перетворення фосфорилметандіоат ω-кінцевої групи. Полімеризацію проводили в ЯМР ампулах з використанням дейтерованого бензену в ролі розчинника. До реакційної суміші було додано
невелику кількість трифенілфосфіноксиду (δ = 25,2 м.ч.) або сульфіду (δ = 42,1 м.ч.) у ролі внутрішнього стандарту для 31Р ЯМР, а також 1,4-діоксану — для 1Н ЯМР. Вони були обрані завдяки їх низькій леткості, хімічній інертності в умовах полімеризації та зручності інтегрування їх сигналів у ЯМР спектрах.

3.1.2.1. Полімеризації стирену

Полімеризації стирену були здійснені за умов наведених у таблиці 3.3. Концентрація вихідних речовин була підібрана для отримання максимальної теоретичної молярної маси PSt близько 15 кДа. Концентрації вихідних речовин були приблизно однакові для всіх серій, проте в силу труднощів, які виникли при зважуванні малих кількостей оліїстих фосфорилметандітіоатів, їх концентрації відхиляються від середнього значення в межах ±15 %.

Таблиця 3.3

<table>
<thead>
<tr>
<th>Експерименти</th>
<th>26–34</th>
<th>35–43</th>
<th>44–50</th>
<th>51–57</th>
<th>58–64</th>
<th>65–70</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA</td>
<td>2.4 a</td>
<td>2.4 b</td>
<td>2.4 c</td>
<td>2.4 d</td>
<td>2.4 e</td>
<td>2.4 f</td>
</tr>
<tr>
<td>[St]₀, М</td>
<td>6,34</td>
<td>6,32</td>
<td>6,31</td>
<td>6,34</td>
<td>6,33</td>
<td>6,32</td>
</tr>
<tr>
<td>[CTA]₀, мМ</td>
<td>45,2</td>
<td>46,3</td>
<td>39,5</td>
<td>39,9</td>
<td>33,9</td>
<td>32,9</td>
</tr>
<tr>
<td>[АІБН]₀, мМ</td>
<td>8,4</td>
<td>8,8</td>
<td>9,1</td>
<td>8,8</td>
<td>8,9</td>
<td>8,9</td>
</tr>
</tbody>
</table>

Результати полімеризацій наведені в таблиці 3.4. Для більшості RAFT агентів була досягнута конверсія близько 85 %, у той час як для сполук 2.4 a,f реакція не пройшла далі 50 %. При цьому результати 31Р ЯМР (інтегральна інтенсивність піку фосфору RAFT агенту) вказують на поступовий розклад (дифенілфосфорил)метандітіоат ω-кінцевої групи (колонка x₀ в таблиці 3.4). У той же час для сполук 2.4 b-e не спостерігається жодних ознак розкладу. Тим не менш максимальна дисперсність отриманих полімерних зразків складає не більше 1,22. Сполука 2.4 b продемонструвала найкращий результат — D всього 1,09 при конверсії стирену 84 %.
Результати полімеризації стирену в ЯМР ампулах.

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>x_0</th>
<th>$M_{n\text{теор}}$, кДа</th>
<th>M_n, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1</td>
<td>1,1 %</td>
<td>100 %</td>
<td>0,55</td>
<td>0,37</td>
<td>1,05</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>1,3 %</td>
<td>100 %</td>
<td>0,56</td>
<td>0,44</td>
<td>1,1</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>2,9 %</td>
<td>100 %</td>
<td>0,81</td>
<td>0,81</td>
<td>1,11</td>
</tr>
<tr>
<td>29</td>
<td>5,5</td>
<td>5,2 %</td>
<td>97 %</td>
<td>1,14</td>
<td>1,03</td>
<td>1,12</td>
</tr>
<tr>
<td>30</td>
<td>9,5</td>
<td>11,0 %</td>
<td>97 %</td>
<td>1,99</td>
<td>1,93</td>
<td>1,12</td>
</tr>
<tr>
<td>31</td>
<td>15</td>
<td>18,9 %</td>
<td>92 %</td>
<td>3,14</td>
<td>3,05</td>
<td>1,11</td>
</tr>
<tr>
<td>32</td>
<td>23</td>
<td>26,8 %</td>
<td>85 %</td>
<td>4,30</td>
<td>4,36</td>
<td>1,14</td>
</tr>
<tr>
<td>33</td>
<td>48</td>
<td>44,4 %</td>
<td>77 %</td>
<td>6,86</td>
<td>7,49</td>
<td>1,16</td>
</tr>
<tr>
<td>34</td>
<td>110</td>
<td>55,0 %</td>
<td>55 %</td>
<td>8,41</td>
<td>8,84</td>
<td>1,22</td>
</tr>
<tr>
<td>35</td>
<td>0,5</td>
<td>1,5 %</td>
<td>100 %</td>
<td>0,64</td>
<td>0,51</td>
<td>1,04</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>3,3 %</td>
<td>100 %</td>
<td>0,90</td>
<td>0,55</td>
<td>1,06</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>6,2 %</td>
<td>100 %</td>
<td>1,31</td>
<td>0,76</td>
<td>1,11</td>
</tr>
<tr>
<td>38</td>
<td>5,5</td>
<td>11,7 %</td>
<td>100 %</td>
<td>2,09</td>
<td>1,34</td>
<td>1,12</td>
</tr>
<tr>
<td>39</td>
<td>17</td>
<td>25,9 %</td>
<td>99 %</td>
<td>4,11</td>
<td>4,10</td>
<td>1,07</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>38,2 %</td>
<td>99 %</td>
<td>5,86</td>
<td>5,90</td>
<td>1,07</td>
</tr>
<tr>
<td>41</td>
<td>50</td>
<td>57,2 %</td>
<td>99 %</td>
<td>8,56</td>
<td>8,41</td>
<td>1,06</td>
</tr>
<tr>
<td>42</td>
<td>100,3</td>
<td>78,6 %</td>
<td>99 %</td>
<td>11,61</td>
<td>12,59</td>
<td>1,08</td>
</tr>
<tr>
<td>43</td>
<td>161</td>
<td>84,1 %</td>
<td>99 %</td>
<td>12,39</td>
<td>13,79</td>
<td>1,09</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>3,2 %</td>
<td>100 %</td>
<td>0,93</td>
<td>0,53</td>
<td>1,08</td>
</tr>
<tr>
<td>45</td>
<td>5,5</td>
<td>9,2 %</td>
<td>98 %</td>
<td>1,92</td>
<td>1,30</td>
<td>1,08</td>
</tr>
<tr>
<td>46</td>
<td>15</td>
<td>23,5 %</td>
<td>98 %</td>
<td>4,30</td>
<td>4,18</td>
<td>1,09</td>
</tr>
<tr>
<td>47</td>
<td>23</td>
<td>34,3 %</td>
<td>98 %</td>
<td>6,10</td>
<td>6,42</td>
<td>1,1</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>52,2 %</td>
<td>96 %</td>
<td>9,56</td>
<td>9,46</td>
<td>1,14</td>
</tr>
<tr>
<td>49</td>
<td>110</td>
<td>76,2 %</td>
<td>98 %</td>
<td>12,60</td>
<td>13,22</td>
<td>1,14</td>
</tr>
<tr>
<td>50</td>
<td>157</td>
<td>85,0 %</td>
<td>97 %</td>
<td>14,03</td>
<td>14,26</td>
<td>1,13</td>
</tr>
<tr>
<td>51</td>
<td>2</td>
<td>5,3 %</td>
<td>99 %</td>
<td>1,27</td>
<td>0,51</td>
<td>1,05</td>
</tr>
<tr>
<td>52</td>
<td>5,5</td>
<td>9,6 %</td>
<td>98 %</td>
<td>1,99</td>
<td>1,38</td>
<td>1,13</td>
</tr>
</tbody>
</table>
На рис. 3.11–3.16 наведені кінетичні криві полімеризації стирену в напівлогарифмічних координатах. Вони мають лінійний характер на початковому етапі полімеризації з подальшим відхиленням від прямої, яке вказує на обрив ланцюга рекомбінацією. МНК аналіз лінійних відрізків цих кривих дозволив оцінити константи швидкості полімеризації стирену за участю цих шести сполук (таблиця 3.5). У цілому вони дуже слабо залежать від структури RAFT агенту, але найвище значення константи швидкості зафіксовано для сполуки 2,4 c, а найменше — для метил-2-((дифенілфосфорил)карбонотіо-
іл)сульфанил)пропаноату 2.4 f, що підтверджує виняткову ефективність RAFT агентів з 1-фенілетильною R групою в полімеризації стирену.

Таблиця 3.5

<table>
<thead>
<tr>
<th>СТА</th>
<th>2.4 a</th>
<th>2.4 b</th>
<th>2.4 c</th>
<th>2.4 d</th>
<th>2.4 e</th>
<th>2.4 f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{P_{St}}$, $c^{-1} \cdot 10^6$</td>
<td>4,00</td>
<td>4,61</td>
<td>5,11</td>
<td>4,61</td>
<td>4,56</td>
<td>1,47</td>
</tr>
<tr>
<td>$k_{P_{St}}$ відносна</td>
<td>1,00</td>
<td>1,15</td>
<td>1,28</td>
<td>1,15</td>
<td>1,14</td>
<td>0,37</td>
</tr>
</tbody>
</table>

Рис. 3.11. Кінетика полімеризації St в присутності сполуки 2.4 a

Рис. 3.12. Кінетика полімеризації St в присутності сполуки 2.4 b

Рис. 3.13. Кінетика полімеризації St в присутності сполуки 2.4 c

Рис. 3.14. Кінетика полімеризації St в присутності сполуки 2.4 d
Рис. 3.15. Кінетика полімеризації St в присутності сполуки 2.4 e

Рис. 3.16. Кінетика полімеризації St в присутності сполуки 2.4 f

Середньочислові молярні маси зростають лінійно (рис. 3.17–3.22), з практично ідеальною кореляцією між експериментально отриманими та теоретично розрахованими значеннями. Тим не менше в разі полімеризації за участю сполуки 2.4 f спостерігається відхилення молярних мас у бік вищих значень при тривалих часах реакції. Воно вказує на значний внесок термінації внаслідок рекомбінації, що також підтверджується суттєвим зменшенням дисперсності в порівнянні з попередньою точкою.

Дисперсності мають тенденцію зростати в ході полімеризації, причому найкращі показники отримані для СТА 2.4 b-e, в той час як сполуки 2.4 a,f забезпечують дещо нижчий ступінь контролю.

Рис. 3.17. Еволюція M_n та D в ході полімеризації St зі сполукою 2.4 a

Рис. 3.18. Еволюція M_n та D в ході полімеризації St зі сполукою 2.4 b
Рис. 3.19. Еволюція M_n та D в ході полімеризації St зі сполукою 2.4 c

Рис. 3.20. Еволюція M_n та D в ході полімеризації St зі сполукою 2.4 d

Рис. 3.21. Еволюція M_n та D в ході полімеризації St зі сполукою 2.4 e

Рис. 3.22. Еволюція M_n та D в ході полімеризації St зі сполукою 2.4 f

ГПХ (рис. 3.23–3.28) вказує на практично мономодальний ММР усіх отриманих зразків полістирену. В той час як полімери, утворені виходячи зі сполук 2.4 b,e,f, мають ідеальну форму розподілу Пуассона, в разі RAFT агентів 2.4 c,d спостерігається утворення невеликого плеча в області вищих молярних мас. Хроматограми полістиренових зразків отриманих у ході експериментів 26–34 (рис. 3.23), виходячи зі сполуки 2.4 a, вказують на причину високих значень їх дисперсностей. Вони містять як “плече” в області високих молярних мас — результат термінації рекомбінацією, так і “хвіст”, утворений внаслідок накопичення низькомолекулярних мертвих ланцюгів у ході полімеризації.
Рис. 3.23. Хроматограми PSt зразків отриманих виходячи зі сполуки 2.4 a

Рис. 3.24. Хроматограми PSt зразків отриманих виходячи зі сполуки 2.4 b

Рис. 3.25. Хроматограми PSt зразків отриманих виходячи зі сполуки 2.4 c

Рис. 3.26. Хроматограми PSt зразків отриманих виходячи зі сполуки 2.4 d

Рис. 3.27. Хроматограми PSt зразків отриманих виходячи зі сполуки 2.4 e

Рис. 3.28. Хроматограми PSt зразків отриманих виходячи зі сполуки 2.4 f
3.1.2.2. Полімеризації бутилакрилату

Полімеризації ВА були здійснені в аналогічних умовах, проте з меншими відхиленнями в концентраціях RAFT агентів — всього ±8 % (таблиця 3.6). Максимальна теоретична молярна маса — близько 17–20 кДа. В цьому випадку не було потреби у використанні внутрішнього стандарту для 1Н ЯМР — конверсію визначали за допомогою внутрішньої нормалізації за сигналами метиленових груп бокових ланцюгів ВА та РВА.

Таблиця 3.6

Концентрації реагентів для полімеризації бутилакрилату в ЯМР ампулах

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>СТА</td>
<td>2.4 a</td>
<td>2.4 b</td>
<td>2.4 c</td>
<td>2.4 d</td>
<td>2.4 e</td>
<td>2.4 f</td>
</tr>
<tr>
<td>[BA]₀, М</td>
<td>5,10</td>
<td>5,09</td>
<td>5,05</td>
<td>5,09</td>
<td>5,10</td>
<td>5,10</td>
</tr>
<tr>
<td>[CTA]₀, мм</td>
<td>33,5</td>
<td>39,5</td>
<td>32,9</td>
<td>39,5</td>
<td>33,4</td>
<td>33,3</td>
</tr>
<tr>
<td>[АІБН]₀, мм</td>
<td>7,5</td>
<td>8,9</td>
<td>8,9</td>
<td>8,9</td>
<td>8,9</td>
<td>8,9</td>
</tr>
</tbody>
</table>

Результати полімеризації перераховані в таблиці 3.7. Наведено відібрани результати, для яких вдалося визначити параметри молярної маси полімерів за допомогою ГПХ.

Таблиця 3.7

Результати полімеризації бутилакрилату в ЯМР ампулах.

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>x_θ</th>
<th>$M_{n, теор}$, кДа</th>
<th>M_n, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>2</td>
<td>0,9 %</td>
<td>99 %</td>
<td>0,55</td>
<td>0,42</td>
<td>1,06</td>
</tr>
<tr>
<td>72</td>
<td>3</td>
<td>1,4 %</td>
<td>99 %</td>
<td>0,65</td>
<td>0,48</td>
<td>1,13</td>
</tr>
<tr>
<td>73</td>
<td>4</td>
<td>4,2 %</td>
<td>99 %</td>
<td>1,19</td>
<td>1,04</td>
<td>1,19</td>
</tr>
<tr>
<td>74</td>
<td>9</td>
<td>18,5%</td>
<td>85 %</td>
<td>3,99</td>
<td>4,89</td>
<td>1,14</td>
</tr>
<tr>
<td>75</td>
<td>13</td>
<td>33,3%</td>
<td>85 %</td>
<td>6,87</td>
<td>7,98</td>
<td>1,14</td>
</tr>
<tr>
<td>76</td>
<td>24</td>
<td>53,5%</td>
<td>65 %</td>
<td>10,83</td>
<td>13,56</td>
<td>1,22</td>
</tr>
<tr>
<td>77</td>
<td>48</td>
<td>74,3 %</td>
<td>55 %</td>
<td>14,87</td>
<td>20,50</td>
<td>1,29</td>
</tr>
</tbody>
</table>
Аналіз результатів продемонстрував значно глибší розбiжностi в ефективностi синтезованих RAFT агентiв, анiж у разi полiмеризацiї стирену. У

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>xо</th>
<th>(M_n) теор, кДа</th>
<th>(M_n), кДа</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>2</td>
<td>33,7</td>
<td>76</td>
<td>5,99</td>
<td>5,78</td>
<td>1,27</td>
</tr>
<tr>
<td>79</td>
<td>3</td>
<td>50,9</td>
<td>63</td>
<td>8,83</td>
<td>8,63</td>
<td>1,25</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
<td>75,4</td>
<td>44</td>
<td>12,88</td>
<td>14,09</td>
<td>1,29</td>
</tr>
<tr>
<td>81</td>
<td>9</td>
<td>86,2</td>
<td>29</td>
<td>14,66</td>
<td>16,61</td>
<td>1,38</td>
</tr>
<tr>
<td>82</td>
<td>13</td>
<td>98,5</td>
<td>12</td>
<td>16,70</td>
<td>17,37</td>
<td>1,44</td>
</tr>
<tr>
<td>83</td>
<td>2</td>
<td>17,4</td>
<td>100</td>
<td>3,81</td>
<td>3,97</td>
<td>1,18</td>
</tr>
<tr>
<td>84</td>
<td>3</td>
<td>33,5</td>
<td>100</td>
<td>6,98</td>
<td>7,54</td>
<td>1,12</td>
</tr>
<tr>
<td>85</td>
<td>4</td>
<td>46,9</td>
<td>98</td>
<td>9,61</td>
<td>10,98</td>
<td>1,10</td>
</tr>
<tr>
<td>86</td>
<td>9</td>
<td>68,0</td>
<td>95</td>
<td>13,75</td>
<td>15,03</td>
<td>1,12</td>
</tr>
<tr>
<td>87</td>
<td>13</td>
<td>81,2</td>
<td>93</td>
<td>16,35</td>
<td>17,79</td>
<td>1,15</td>
</tr>
<tr>
<td>88</td>
<td>24</td>
<td>93,9</td>
<td>90</td>
<td>18,84</td>
<td>21,07</td>
<td>1,15</td>
</tr>
<tr>
<td>89</td>
<td>3</td>
<td>8,5</td>
<td>100</td>
<td>1,80</td>
<td>2,00</td>
<td>1,18</td>
</tr>
<tr>
<td>90</td>
<td>5,2</td>
<td>20,4</td>
<td>99</td>
<td>3,77</td>
<td>4,58</td>
<td>1,16</td>
</tr>
<tr>
<td>91</td>
<td>9</td>
<td>37,9</td>
<td>97</td>
<td>6,67</td>
<td>6,64</td>
<td>1,13</td>
</tr>
<tr>
<td>92</td>
<td>14</td>
<td>62,0</td>
<td>96</td>
<td>10,66</td>
<td>13,64</td>
<td>1,14</td>
</tr>
<tr>
<td>93</td>
<td>48</td>
<td>91,1</td>
<td>86</td>
<td>15,47</td>
<td>20,02</td>
<td>1,18</td>
</tr>
<tr>
<td>94</td>
<td>3</td>
<td>20,2</td>
<td>91</td>
<td>4,33</td>
<td>4,52</td>
<td>1,17</td>
</tr>
<tr>
<td>95</td>
<td>6</td>
<td>38,9</td>
<td>91</td>
<td>7,98</td>
<td>9,50</td>
<td>1,10</td>
</tr>
<tr>
<td>96</td>
<td>13</td>
<td>64,8</td>
<td>88</td>
<td>13,05</td>
<td>15,92</td>
<td>1,15</td>
</tr>
<tr>
<td>97</td>
<td>24</td>
<td>80,3</td>
<td>82</td>
<td>16,08</td>
<td>20,57</td>
<td>1,19</td>
</tr>
<tr>
<td>98</td>
<td>6</td>
<td>16,7</td>
<td>100</td>
<td>3,65</td>
<td>4,52</td>
<td>1,12</td>
</tr>
<tr>
<td>99</td>
<td>9</td>
<td>24,4</td>
<td>94</td>
<td>5,16</td>
<td>6,88</td>
<td>1,11</td>
</tr>
<tr>
<td>100</td>
<td>13</td>
<td>36,7</td>
<td>85</td>
<td>7,58</td>
<td>10,11</td>
<td>1,16</td>
</tr>
<tr>
<td>101</td>
<td>24</td>
<td>54,7</td>
<td>67</td>
<td>11,11</td>
<td>15,36</td>
<td>1,29</td>
</tr>
<tr>
<td>102</td>
<td>48</td>
<td>73,5</td>
<td>46</td>
<td>14,81</td>
<td>21,20</td>
<td>1,45</td>
</tr>
</tbody>
</table>
всіх випадках було помічено ознаки деградації ω-кінцевих груп. Ряд стабільності
виглядає так: \(2.4 \text{ b} < 2.4 \text{ a} < 2.4 \text{ f} < 2.4 \text{ e} < 2.4 \text{ d} < 2.4 \text{ c} \). При цьому низька
стабільність RAFT агенту \(2.4 \text{ b} \) виявилась абсолютно несподіваною, оскільки
його аналоги \(2.4 \text{ e,d} \) практично не проявляють цього недоліку. Ми припускаємо
передачу ланцюга з макрорадикалу на одну із чотирьох ізопропільних груп у
складі біс(діізопропіламіно)фосфорильного фрагменту. Вигляд кінетичної
кривої (рис. 3.30) підтверджує це припущення: після початкової лінійної ділянки
крива відхиляється вгору, що вказує на утворення нових радикальних центрів у
ході полімеризації.

Інша відмінність ефективності цих шести RAFT агентів проявляється в
швидкостях полімеризації — оцінюємо константи швидкості наведені в
таблиці 3.8.

Таблиця 3.8

| Константи швидкості полімеризації бутилакрилату зі сполуками 2.4 a-f |
|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| | 2.4 a | 2.4 b | 2.4 c | 2.4 d | 2.4 e | 2.4 f |
| k_P, с^-1, \cdot 10^6 | 9,92 | 71,1 | 36,6 | 17,9 | 23,2 | 9,42 |
| k_P відносна | 1,00 | 7,17 | 3,69 | 1,80 | 2,34 | 0,95 |

Найвища швидкість спостерігається для полімеризації в присутності
сполуки \(2.4 \text{ b} \), проте така висока швидкість тягне за собою низький ступінь
контролю над полімеризацією. Полімеризація в присутності RAFT агентів \(2.4 \text{ c,e} \)
має децю нижчу швидкість, але кінетичний профіль відповідає очікуванню —
крива відхиляється вниз у ході реакції, вказуючи на поступовий обрив ланцюга
рекомбінацією. Такі значення швидкостей оптимально врівноважують час
необхідний для досягнення високої конверсії мономеру та рівень контролю над
полімеризацією. Нарешті, (дифенілфосфіл)метандітіоати \(2.4 \text{ a,f} \), як і в разі
полімеризації стирену спричинюють найбільше сповільнення реакції. Швидкість
полімеризації практично однакова для обох сполук, але в разі сполуки \(2.4 \text{ a} \)
(рис. 3.29) спостерігається незначний індукуційний період, викликаний
ініціалізацією RAFT агенту.
Рис. 3.29. Кінетика полімеризації ВА в присутності сполуки 2.4 a
Рис. 3.30. Кінетика полімеризації ВА в присутності сполуки 2.4 b
Рис. 3.31. Кінетика полімеризації ВА в присутності сполуки 2.4 c
Рис. 3.32. Кінетика полімеризації ВА в присутності сполуки 2.4 d
Рис. 3.33. Кінетика полімеризації ВА в присутності сполуки 2.4 e
Рис. 3.34. Кінетика полімеризації ВА в присутності сполуки 2.4 f
В усіх шести випадках молярні маси РВА зростають лінійно в ході реакції. Тим не менше, спостерігається відхилення від теоретичних значень у бік високих молярних мас. У цілому воно може бути пояснене відмінностями в характеристикі в’язкості PSt та РВА при використанні стандартної калібровки за зразками полістирену. Тим не менше, в разі сполук 2.4 а,ф відхилення значно вищі, в зв’язку зі значним внеском побічних реакцій при тривалому часі реакції.

Значення дисперсності поступово знижуються з початку полімеризації, але після досягнення 40 % конверсії мономеру вони знову починають зростати. Найкращі показники отримані у ході полімеризації за участю регуляторів 2.4 с-е — дисперсність утримувалась на рівні 1,15–1,19 протягом всього часу полімеризації (рис. 3.37–3.39). Проте для трьох інших сполук ситуація дещо складніша (рис. 3.35, 3.36, 3.40). У разі RAFT агенту 2.4 b, який виявився найменш підходячим для полімеризації акрилатів, дисперсність поступово зростає від 1,25 до 1,44, що напряму пов’язано з деградацією ω-кінцевої групи полімеру, зафіксованою за допомогою 31P ЯМР. Аналогічний феномен проявляється і в разі сполук 2.4 а,ф, правда в дещо меншій мірі, що напряму пов’язано з їх вищою стабільністю.

Рис. 3.35. Еволюція M_n та D в ході полімеризації ВА зі сполукою 2.4 a

Рис. 3.36. Еволюція M_n та D в ході полімеризації ВА зі сполукою 2.4 b
Рис. 3.37. Еволюція M_n та D в ході полімеризації BA зі сполукою 2.4c

Рис. 3.38. Еволюція M_n та D в ході полімеризації BA зі сполукою 2.4d

Рис. 3.39. Еволюція M_n та D в ході полімеризації BA зі сполукою 2.4e

Рис. 3.40. Еволюція M_n та D в ході полімеризації BA зі сполукою 2.4f

Вищезгадані тенденції в зміні молярних мас та дисперсностей полімерів дуже наочно проявляються на ГПХ хроматограмах наведених на рис. 3.41–3.46. Високий рівень контролю над полімеризацією в разі використання RAFT агентів 2.4c-e підтверджується мономодальним ММР отриманих зразків РВА, вузькістю піків та їх чітким зміщенням у бік вищих молярних мас протягом полімеризації. В той же час, при розгляді хроматограм зразків отриманих, виходячи зі сполук 2.4a,b,f вдається виявити ключові особливості перебігу полімеризації. В першу чергу слід звернути увагу на два піка в області низьких молярних мас на рис. 3.41 — вони відповідають утворенню олігомерів під час ініціалізації. Щойно весь вихідний RAFT агент вичерпано, швидкість реакції
підвищується і піки олігомерів зникають. Після досягнення молярної маси 7,98 кДа з’являється інтенсивне плече, викликане обривом ланцюгової реакції рекомбінацією радикалів. Аналогічна картина спостерігається і в разі використання іншого (дифенілфосфорил)метандіотіату 2.4 f (рис. 3.46). Хроматограми полімерних зразків отриманих з використанням RAFT агенту 2.4 b разюче відрізняються від отриманих для попередніх випадків. Після досягнення молярної маси 14,09 кДа починає проявлятися хвіст, який зростає з ростом конверсії та пояснюється незворотною дезактивацією макрорадикалів (рис. 3.42).

Рис. 3.41. Хроматограми PBA зразків отриманих виходячи з сполуки 2.4 a

Рис. 3.42. Хроматограми PBA зразків отриманих виходячи з сполуки 2.4 b

Рис. 3.43. Хроматограми PBA зразків отриманих виходячи з сполуки 2.4 c

Рис. 3.44. Хроматограми PBA зразків отриманих виходячи з сполуки 2.4 d
Рис. 3.45. Хроматограми PBA зразків отриманих виходячи зі сполуки 2.4 e

Незворотні перетворення RAFT агента 2.4 b у процесі полімеризації винятково чітко проявляються в 31P ЯМР спектрах (рис. 3.47). Хімічний зсув фосфору в складі вихідного регулятора, а також ω-кінцевої групи полімеру має значення близько 15 м.ч. Проте в ході полімеризації, окрім очікуваної зміни вигляду цього піку, спостерігається поява групи нових піків в області 35–40 м.ч. Судячи з їх вигляду, можна стверджувати, що вони відповідають фосфору в складі полімеру, проте наразі ми не можемо висунути конкретних припущень щодо структури цих продуктів. Тим не менше, спектри однозначно вказують на незворотну трансформацію ω-кінцевих груп полімеру з повною дезактивацією, що й проявляється у вигляді вищезгаданих відхилень у контролі полімеризації.

На основі отриманих результатів можна виділити дві системи, які показали найкращі результати для контролю полімеризації як стирену, так і бутилакрилату — сполуки 2.4 c та 2.4 d. Слід відзначити, що кожен з цих СТА має як свої переваги, так і недоліки — (дициклогексилфосфорил)метандитіоат 2.4 c дозволяє досягнути вищої швидкості полімеризації та дещо кращого контролю, проте (ди(піперидин-іл)фосфорил)метандитіоат 2.4 d виявляється значно дешевшим з точки зору його приготування. Саме тому останній RAFT агент можна порекомендувати для рутинного використання.

1H та 119Sn ЯМР спектри реакційних сумішей отриманих у ході полімеризацій St та BA наведені в додатках 90–112.
Чи не найважливіше застосування RAFT полімеризації — блок-кополімеризація. Тому ми вирішили випробувати сполуку 2.4 с в синтезі блок-кополімеру бутилакрилату зі стиреном. Для цього було використано макро-RAFT агент 2.4 с-PBA отриманий за методикою описаною вище для гомополімеризації VA. Після очистки переосадженням та аналізу за допомогою ГПХ, було виявлено, що він має середньочислову молярну масу 2,27 кДа та дисперсність 1,25 (таблиця 3.9). Полімеризація стирену в присутності цього макро-RAFT агенту (схема 3.2) була здійснена за методикою описаною в частині 3.1.2 з використанням наступних концентрацій реагентів: \([\text{St}]_0 = 6,22 \text{ М}; [2.4 \text{ c-PBA}]_0 = 23,0 \text{ мМ}; [\text{АІБН}]_0 = 5,1 \text{ мМ.} \) Характеристики отриманих зразків полімерів систематизовані в таблиці 3.9. Як бачимо, вони дуже слабо відрізняються від отриманих з використанням низькомолекулярного
регулятора 2.4 c. Константа швидкості полімеризації отримана з кінетичної кривої (рис. 3.48) має значення 5,10·10^-6 c^-1, що практично співпадає зі значенням отриманим для RAFT агенту 2.4 c. Середньочислова молярна маса (рис. 3.49) зростає лінійно протягом всього часу полімеризації з ідеальною кореляцією з теоретично передбаченими значеннями. Дисперсність поступово знижується від 1,25 для чистого РВА до 1,13 для кополімеру 2.4 c-PSt(19 кДа)-b-PBA(2 кДа), що вказує на високий рівень контролю.

![Схема 3.2](image)

Таблиця 3.9

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>x_ω</th>
<th>M_n теор., кДа</th>
<th>M_n, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>0</td>
<td>0,0 %</td>
<td>100 %</td>
<td>2,27</td>
<td>2,27</td>
<td>1,25</td>
</tr>
<tr>
<td>104</td>
<td>1</td>
<td>1,6 %</td>
<td>100 %</td>
<td>2,67</td>
<td>2,85</td>
<td>1,22</td>
</tr>
<tr>
<td>105</td>
<td>2</td>
<td>4,1 %</td>
<td>97 %</td>
<td>3,29</td>
<td>3,32</td>
<td>1,19</td>
</tr>
<tr>
<td>106</td>
<td>5,5</td>
<td>9,4 %</td>
<td>97 %</td>
<td>4,6</td>
<td>4,44</td>
<td>1,16</td>
</tr>
<tr>
<td>107</td>
<td>9,5</td>
<td>19,8%</td>
<td>97 %</td>
<td>7,18</td>
<td>6,92</td>
<td>1,14</td>
</tr>
<tr>
<td>108</td>
<td>15</td>
<td>27,5 %</td>
<td>94 %</td>
<td>9,09</td>
<td>8,69</td>
<td>1,13</td>
</tr>
<tr>
<td>109</td>
<td>23</td>
<td>36,8 %</td>
<td>93 %</td>
<td>11,38</td>
<td>10,70</td>
<td>1,15</td>
</tr>
<tr>
<td>110</td>
<td>48</td>
<td>54,9 %</td>
<td>93 %</td>
<td>15,88</td>
<td>15,75</td>
<td>1,16</td>
</tr>
<tr>
<td>111</td>
<td>110</td>
<td>74,3 %</td>
<td>93 %</td>
<td>20,69</td>
<td>21,04</td>
<td>1,13</td>
</tr>
</tbody>
</table>
Результати ГПХ (рис. 3.50) вказують на мономодальний ММР усіх полімерних зразків з винятково чітким зміщенням піку макро-RAFT агенту одразу ж після початку полімеризації. Подібна поведінка вказує на дуже високу частку “живих” ланцюгів у його складі, а також на практично миттєву ініціалізацію регулятора.

Рис. 3.48. Кінетика
блок-кополімеризації St з 2.4 c-PBA

Рис. 3.49. Еволюція M_n та D в ході
блок-кополімеризації St з 2.4 c-PBA

Рис. 3.50. Хроматограми блок-кополімерів 2.4 c-PSt-b-PBA

На рис. 3.51 наведено суперпозицію 31P ЯМР спектрів RAFT агента 2.4 c, макро-RAFT агенту 2.4 c-PBA(2K), а також отриманих блок-кополімерів (еволюція 1Н ЯМР спектрів наводиться в додатку 113). Як ми бачимо, при переході від низькомолекулярного регулятора до гомо-полімеру PBA сигнал фосфору зміщується в слабке поле. Цієї різниці хімічних зсувів цілком достатньо для того, щоб можна було судити про ступінь конверсії вихідного RAFT агента
в ході полімеризації. Із початком кополімеризації, сигнал фосфору зсувається назад у сильне поле, досягаючи значень характерних для сполуки 2.4 с. Це пов'язано з близькістю структур 1-фенілетильної групи та полістирену. В той час як у зразках отриманих після 1 та 2 год полімеризації все ще спостерігаються залишкові сигнали при 52,5 м.ч., то після 5,5 год вони остаточно зникають, вказуючи на повну конверсію макро-RAFT агенту. Слід звернути увагу і на вигляд сигналів — у той час як сигнал PBA має вигляд чотирьох піків, сигнал PST виглядає як два розширених піка з різницею хімічних зсувів 0.5 м.ч. Форма піків може служити додатковим критерієм для визначення структури полімеру зв'язаного з фосфорилметандитіоатним ω-кінцевим фрагментом.

Рис. 3.51. $^{31}\text{P}{^1\text{H}}$ ЯМР спекти реакційних сумішей отриманих у ході блок-кополімеризації St та BA за допомогою сполуки 2.4 с.
3.2. Полімеризації за участю трифенілстананкарбодіатіофітіофів

3.2.1. Полімеризації в класичних умовах

Так само як і в випадку з фосфорилметандіататами, ми вирішили почати з оцінки меж застосування триарилстананкарбодіатіофітіофів. Для цього було обрано бензилтрифенілстананкарбодіатіофітіофіа 2.7 а у зв’язку з його відносною зручністю у використанні та простоті напрацювання грамових кількостей. За його участю було проведено полімеризацію St, MA, DMAA, NIPAM та TOA в запаяних ампулах при 60 °C. В якості ініціатора незмінно використовувався АІБН, а розчинника — толуен для стирену та метилакрилату, і 1,4-діоксан для акриламідів. Вихідні концентрації реагентів наведені в таблиці 3.10. Варто зауважити, що в наведеній серії випробувань для кожного мономеру готувалися лише чотири ампули, чого було цілком достатньо для оцінки якості контролю над полімеризацією. Узагальнена схема реакції за участю регулятора 2.7 а наводиться на схемі 3.3. Результати полімеризацій наводяться в таблиці 3.11.

Наведена схема реакції за участю регулятора 2.7 а наводиться на схемі 3.3. Результати полімеризацій наводяться в таблиці 3.11.

![Схема 3.3](image)

Схема 3.3

Таблиця 3.10

<table>
<thead>
<tr>
<th>Концентрації реагентів для полімеризацій 112–131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мономер (M)</td>
</tr>
<tr>
<td>[M]₀, М</td>
</tr>
<tr>
<td>2.7 а₀, М</td>
</tr>
<tr>
<td>[АІБН]₀, М</td>
</tr>
</tbody>
</table>

*концентрація макро-RAFT агенту 2.7 а-PTOA(7,7кДа) — див. експеримент 132
Результати отримані в ході полімеризацій 112–131.

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>$M_{n \text{ теор.}}$, кДа</th>
<th>M_{n}, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>14</td>
<td>20 %</td>
<td>4,39</td>
<td>9,44</td>
<td>1,28</td>
</tr>
<tr>
<td>113</td>
<td>24</td>
<td>34 %</td>
<td>7,11</td>
<td>21,71</td>
<td>1,40</td>
</tr>
<tr>
<td>114</td>
<td>50</td>
<td>55 %</td>
<td>11,18</td>
<td>40,07</td>
<td>1,63</td>
</tr>
<tr>
<td>115</td>
<td>100</td>
<td>78 %</td>
<td>15,64</td>
<td>74,46</td>
<td>2,49</td>
</tr>
<tr>
<td>116</td>
<td>1,5</td>
<td>18 %</td>
<td>4,14</td>
<td>4,76</td>
<td>1,21</td>
</tr>
<tr>
<td>117</td>
<td>3</td>
<td>48 %</td>
<td>10,15</td>
<td>11,84</td>
<td>1,21</td>
</tr>
<tr>
<td>118</td>
<td>6</td>
<td>70 %</td>
<td>14,54</td>
<td>17,29</td>
<td>1,36</td>
</tr>
<tr>
<td>119</td>
<td>14</td>
<td>90 %</td>
<td>18,56</td>
<td>20,21</td>
<td>1,56</td>
</tr>
<tr>
<td>120</td>
<td>1</td>
<td>23 %</td>
<td>4,95</td>
<td>7,29</td>
<td>1,07</td>
</tr>
<tr>
<td>121</td>
<td>1,42</td>
<td>48 %</td>
<td>9,88</td>
<td>17,14</td>
<td>1,11</td>
</tr>
<tr>
<td>122</td>
<td>1,75</td>
<td>83 %</td>
<td>16,72</td>
<td>35,79</td>
<td>1,13</td>
</tr>
<tr>
<td>123</td>
<td>2,5</td>
<td>92 %</td>
<td>18,55</td>
<td>43,22</td>
<td>1,08</td>
</tr>
<tr>
<td>124</td>
<td>2</td>
<td>28 %</td>
<td>5,17</td>
<td>4,60</td>
<td>1,02</td>
</tr>
<tr>
<td>125</td>
<td>3</td>
<td>68 %</td>
<td>11,85</td>
<td>13,97</td>
<td>1,05</td>
</tr>
<tr>
<td>126</td>
<td>4</td>
<td>77 %</td>
<td>13,37</td>
<td>14,40</td>
<td>1,06</td>
</tr>
<tr>
<td>127</td>
<td>5</td>
<td>88 %</td>
<td>15,25</td>
<td>17,77</td>
<td>1,09</td>
</tr>
<tr>
<td>128</td>
<td>3,5</td>
<td>9 %</td>
<td>2,27</td>
<td>3,11</td>
<td>1,28</td>
</tr>
<tr>
<td>129</td>
<td>5,5</td>
<td>53 %</td>
<td>10,86</td>
<td>10,16</td>
<td>1,10</td>
</tr>
<tr>
<td>130</td>
<td>6,25</td>
<td>73 %</td>
<td>14,79</td>
<td>14,64</td>
<td>1,12</td>
</tr>
<tr>
<td>131</td>
<td>7</td>
<td>89 %</td>
<td>17,91</td>
<td>17,80</td>
<td>1,10</td>
</tr>
<tr>
<td>132</td>
<td>0</td>
<td>0 %</td>
<td>7,77</td>
<td>7,77</td>
<td>1,09</td>
</tr>
<tr>
<td>133</td>
<td>3</td>
<td>21 %</td>
<td>13,95</td>
<td>14,19</td>
<td>1,49</td>
</tr>
<tr>
<td>134</td>
<td>6</td>
<td>39 %</td>
<td>19,22</td>
<td>20,69</td>
<td>1,48</td>
</tr>
<tr>
<td>135</td>
<td>9</td>
<td>58 %</td>
<td>24,55</td>
<td>25,42</td>
<td>1,41</td>
</tr>
<tr>
<td>136</td>
<td>13</td>
<td>80 %</td>
<td>31,08</td>
<td>33,39</td>
<td>1,35</td>
</tr>
</tbody>
</table>
Полімеризація стирену (експерименти 112–115) продемонструвала незадовільний ступінь контролю, що узгоджується з даними щодо термічної стабільності триарилстананкарбодійатів. Середньочислова молярна маса полістирену зростає лінійно в ході полімеризації, проте її значення сильно перевищують теоретично розраховані (рис. 3.52). Дисперсність також зростає протягом полімеризації від 1,28 до 2,49, що підтверджує втрату контролю з часом. ГПХ (рис. 3.53) демонструє бімодальний ММР утворених полімерних зразків із відношенням молярних мас двох піків близько 2:1, а також утворення “хвостів” вже після 40 % конверсії.

Рис. 3.52. Еволюція M_n та D в ході полімеризації St зі сполукою 2.7 а

Рис. 3.53. Суперпозиція хроматограм PSt зразків (експ. 112–115)

У порівнянні з цим полімеризація метилакрилату (експерименти 116–119) показала куди кращі результати. Молярна маса утворених полімерних зразків зростає лінійно в ході полімеризації, причому її значення дуже близькі до теоретично розрахованих (рис. 3.54). Дисперсність тримається на низькому рівні до 50 % конверсії мономеру і потім поступово зростає, досягаючи значення 1,56 в кінці полімеризації. Це супроводжується появою “плеча” на ГПХ хроматограмах відповідних полімерних зразків (рис. 3.55). Як було згадано вище, воно може бути пояснене обривом ланцюга рекомбінацією.

Використання більш реакційноздатного метилакрилату дозволяє отримати кращі результати за рахунок меншого часу полімеризації (14 год для MA в
порівнянні з 100 год для St). На основі цього факту ми вирішили в подальшому зосередитись на акриламідах, які мають ще вищу швидкість полімеризації.

Рис. 3.54. Еволюція M_n та D в ході полімеризації MA зі сполукою 2.7 a Рис. 3.55. Суперпозиція хроматограм ПМА зразків (експ. 116–119)

Полімеризація N,N-диметилакриламіду (експерименти 120–123) тривала всього 2,5 год. Незважаючи на низькі значення дисперсностей отриманих полімерних зразків, контроль над молярною масою виявився незадовільним (рис. 3.56) — хоч вона й зростає лінійно в ході полімеризації, але її значення значно перевищують теоретично передбачені. В ГПХ хроматограмах також спостерігається “плече” в області високих молярних мас (рис. 3.57). Подібне відхилення виявилось несподіваним і викликане полярністю мономеру, яка може служити рушійною силою для гідролізу ω-кінцевої групи полімеру.

Рис. 3.56. Еволюція M_n та D в ході полімеризації DMAA з 2.7 a Рис. 3.57. Суперпозиція хроматограм PDMAA зразків (експ. 120–123)
Набагато краще виглядають результати полімеризації NIPAM (експерименти 124–127). Молярна маса полімерних зразків зростає лінійно в ході полімеризації, причому її значення дуже близькі до теоретично розрахованих (рис. 3.58). Значення дисперсності утворених полімерних зразків залишаються нижчими ніж 1,10 при всіх значеннях конверсії мономеру, що підтверджує високий ступінь контролю. ГПХ хроматограми (рис. 3.59) наближаються до ідеальної форми, проте в разі вищих часів реакції також проявляється “плече” в області високих молярних мас.

Рис. 3.58. Еволюція M_n та D в ході полімеризації NIPAM з 2.7 а

Рис. 3.59. Суперпозиція хроматограм PNIPAM зразків (експ. 124–127)

У разі полімеризації гідрофобного TOA (експерименти 128–136) було отримано найкращі результати. При цьому спостерігається тривалий період ініціалізації RAFT агенту — полімеризація починається лише через 3 год після початку нагрівання. При цьому молярна маса зростає лінійно з ідеальною кореляцією між практично отриманими та теоретично розрахованими значеннями (рис. 3.60). Дисперсність поступово знижується в ході реакції від 1,28 до 1,10. Все це підтверджується виглядом ГПХ хроматограм отриманих полімерних зразків, які демонструють ідеальний мономодальний ММР без жодних відхилень (рис. 3.61).
Рис. 3.60. Еволюція M_n та D в ході полімеризації TOA зі сполукою 2.7 a. Рис. 3.61. Суперпозиція хроматограм PTOA зразків (експ. 128–131)

Особливу увагу слід приділити експериментам 132–136. Вони присвячені подовженню ланцюга полімеру. Для цього був синтезований макро-RAFT агент 2.7 a-PTOA, який був очищений переосадженням з етанолу і використаний як регулятор для полімеризацій 133–136 (схема 3.4).

![Схема 3.4](image)

Схема 3.4

Основне призначення цього експерименту — підтвердження можливості подовження ланцюга отриманого полімеру. При цьому не було виявлено жодних ознак інгібіювання, що цілком природньо для використання макро-RAFT агенту. Молярна маса зростає лінійно, з хорошою кореляцією між теорією та практикою (рис. 3.62). Дисперсність дещо підвищується на початку полімеризації, проте потім вона поступово знижується від 1,49 до 1,35. Все це підтверджується виглядом ГПХ хроматограм (рис. 3.63), які демонструють мономодальний ММР із чітким зміщенням піків в область вищих молярних мас. Це демонструє “живу” природу полімерних ланцюгів і можливість їх подовження в будь-який момент.
3.2.2. Полімеризації з варіацією температури

Опираючись на вищеописані результати полімеризаційних випробувань, а також інформацію щодо термічної стабільності триарилстананкарбодитіоатів, ми вирішили провести ряд полімеризацій із варіацією температурних умов. Було проведено полімеризацію метилакрилату в присутності (1-фенілетил)трифенілстананкарбодитіоату 2.7 b у толуені при 50, 60 та 70 °C. Концентрації вихідних речовин для всіх трьох серій випробувань наводяться в таблиці 3.12. У той час як концентрації мономеру та RAFT агенту практично ідентичні в усіх трьох випадках, концентрацію АІБН довелося підлаштовувати під конкретну температуру і, відповідно, швидкість розкладу. Таким чином, забезпечувались однакові швидкості ініціювання та концентрації радикальних центрів протягом полімеризації при трьох різних температурах.
Концентрації реагентів для полімеризації 137–148

<table>
<thead>
<tr>
<th>Експерименти</th>
<th>137–140</th>
<th>141–144</th>
<th>145–148</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура, °C</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>[МА]₀, М</td>
<td>2,44</td>
<td>2,48</td>
<td>2,44</td>
</tr>
<tr>
<td>[2.7 б]₀, М</td>
<td>0,0108</td>
<td>0,0107</td>
<td>0,0108</td>
</tr>
<tr>
<td>[АІБН]₀, М</td>
<td>0,0162</td>
<td>0,0028</td>
<td>0,0012</td>
</tr>
</tbody>
</table>

Результати випробувань, а також характеристики отриманих полімерних зразків систематизовані в таблиці 3.13, а також на рис. 3.64–3.69. У цілому швидкість полімеризації при 50 та 60 °C практично однакова, тоді як при 70 °C вона вдвічі вища.

Результати отримані в ході полімеризацій 137–148.

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>M_n теор, кДа</th>
<th>M_n, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>3</td>
<td>49 %</td>
<td>10,00</td>
<td>13,74</td>
<td>1,14</td>
</tr>
<tr>
<td>138</td>
<td>6</td>
<td>74 %</td>
<td>14,89</td>
<td>19,70</td>
<td>1,26</td>
</tr>
<tr>
<td>139</td>
<td>13</td>
<td>89 %</td>
<td>17,97</td>
<td>20,12</td>
<td>1,48</td>
</tr>
<tr>
<td>140</td>
<td>18</td>
<td>93 %</td>
<td>18,70</td>
<td>21,25</td>
<td>1,54</td>
</tr>
<tr>
<td>141</td>
<td>1,5</td>
<td>1 %</td>
<td>0,79</td>
<td>3,36</td>
<td>1,95</td>
</tr>
<tr>
<td>142</td>
<td>3</td>
<td>42 %</td>
<td>8,81</td>
<td>11,35</td>
<td>1,13</td>
</tr>
<tr>
<td>143</td>
<td>6</td>
<td>70 %</td>
<td>14,37</td>
<td>18,05</td>
<td>1,29</td>
</tr>
<tr>
<td>144</td>
<td>14</td>
<td>90 %</td>
<td>18,36</td>
<td>21,37</td>
<td>1,55</td>
</tr>
<tr>
<td>145</td>
<td>1,5</td>
<td>48 %</td>
<td>9,89</td>
<td>15,42</td>
<td>1,22</td>
</tr>
<tr>
<td>146</td>
<td>3</td>
<td>71 %</td>
<td>14,30</td>
<td>22,79</td>
<td>1,42</td>
</tr>
<tr>
<td>147</td>
<td>6</td>
<td>85 %</td>
<td>17,01</td>
<td>30,22</td>
<td>1,84</td>
</tr>
<tr>
<td>148</td>
<td>8</td>
<td>88 %</td>
<td>17,63</td>
<td>28,21</td>
<td>1,88</td>
</tr>
</tbody>
</table>

Контроль над молярною масою та дисперсією полімерів практично однаковий при 50 та 60 °C (рис. 3.64–3.65): молярна маса зростає лінійно в ході
полімеризації з хорошою кореляцією з теоретично розрахованими значеннями. Дисперсність поступово зростає в ході реакції, досягаючи максимального значення близько 1,5 в її кінці. Суттєвіші відмінності проявляються у ГПХ хроматограмах полімерних зразків: інтенсивність “плеча” при високих конверсіях мономеру зростає з температурою, що свідчить про збільшення внеску обриву ланцюга рекомбінацією (рис. 3.66–3.67).

![ГПХ хроматограми](image1)

Рис. 3.64. Еволюція M_n та D в ході полімеризації MA з 2.7 b при 50 °C

Рис. 3.65. Еволюція M_n та D в ході полімеризації MA з 2.7 b при 60 °C

Рис. 3.66. Суперпозиція хроматограм РМА зразків отриманих при 50 °C

Рис. 3.67. Суперпозиція хроматограм РМА зразків отриманих при 60 °C

Подальше підвищення температури на десять градусів приводить до втрати контролю над молярною масою, а також збільшення дисперсності утворених полімерів (рис. 3.68). Усе це супроводжується значним розширенням піків у ГПХ хроматограмах (рис. 3.69).
Рис. 3.68. Еволюція M_n та D в ході полімеризації МА з 2.7 b при 70 °C Рис. 3.69. Суперпозиція хроматограм РМА зразків отриманих при 70 °C

Отримані результати підтверджують вищезгадане припущення про негативний вплив підвищення температури на ступінь контролю над радикальною полімеризацією за участю алкілтриарилстананкарбодійотів.

3.2.3. Полімеризації з напів-онлайн 1Н та 119Sn ЯМР моніторингом

Як було сказано вище, введення атома стануму до молекули RAFT агенту відкриває перспективи використання 119Sn ЯМР для моніторингу процесу полімеризації. Ми вирішили провести експеримент аналогічний до описаного вище для фосфорилметандійотів. Для цієї мети ми провели гомополімеризації MA та St в присутності RAFT агенту 2.7 a (експерименти 149–162). В якості розчинника було використано дейтерований бензен, а концентрації реагентів (таблиця 3.14) були адаптовані до низької концентрації ядер 119Sn задля забезпечення хорошої якості ЯМР спектрів. Експеримент був оформлений аналогічно до описаного в частині 3.1.2, а саме: проведення полімеризації в ЯМР ампулах, з записом 1Н та 119Sn{1Н} ЯМР спектрів та аналізом реакційних сумішей за допомогою ГПХ. Отримані 119Sn{1Н} ЯМР спектри наведені в додатках 114 та 115. Результати полімеризацій, а також характеристики отриманих полімерів систематизовані в таблиці 3.15 та на рис. 3.70–3.75.
Таблиця 3.14

Концентрації реагентів для полімеризації 149–162

<table>
<thead>
<tr>
<th>Експерименти</th>
<th>149–155</th>
<th>156–162</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мономер (М)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[M]₀, М</td>
<td>6,89</td>
<td>8,35</td>
</tr>
<tr>
<td>[2.7 a]₀, М</td>
<td>0,1003</td>
<td>0,0878</td>
</tr>
<tr>
<td>[АБН]₀, М</td>
<td>0,0102</td>
<td>0,0103</td>
</tr>
</tbody>
</table>

Кінетичні криві в напівлогарифмічних координатах для полімеризації обох мономерів наведені на рис. 3.70–3.71. У випадку стирену крива відхиляється в бік скорочення кількості радикальних центрів, тоді як для метилакрилату навпаки спостерігається збільшення їх кількості.

Таблиця 3.15

Результати отримані в ході полімеризацій 149–162.

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>M_n теор., кДа</th>
<th>M_n, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>4</td>
<td>4,4 %</td>
<td>1,08</td>
<td>1,02</td>
<td>1,32</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>7,9 %</td>
<td>1,37</td>
<td>1,35</td>
<td>1,35</td>
</tr>
<tr>
<td>151</td>
<td>8</td>
<td>11,3 %</td>
<td>1,57</td>
<td>1,55</td>
<td>1,37</td>
</tr>
<tr>
<td>152</td>
<td>15</td>
<td>24,0 %</td>
<td>2,38</td>
<td>2,24</td>
<td>1,40</td>
</tr>
<tr>
<td>153</td>
<td>24</td>
<td>34,8 %</td>
<td>3,14</td>
<td>3,68</td>
<td>1,44</td>
</tr>
<tr>
<td>154</td>
<td>39</td>
<td>51,5 %</td>
<td>4,22</td>
<td>5,64</td>
<td>1,39</td>
</tr>
<tr>
<td>155</td>
<td>54</td>
<td>60,0 %</td>
<td>4,81</td>
<td>7,15</td>
<td>1,38</td>
</tr>
<tr>
<td>156</td>
<td>1,5</td>
<td>6,0 %</td>
<td>1,26</td>
<td>0,95</td>
<td>1,27</td>
</tr>
<tr>
<td>157</td>
<td>2</td>
<td>11,1 %</td>
<td>1,57</td>
<td>1,31</td>
<td>1,32</td>
</tr>
<tr>
<td>158</td>
<td>3</td>
<td>23,1 %</td>
<td>2,44</td>
<td>2,78</td>
<td>1,42</td>
</tr>
<tr>
<td>159</td>
<td>3,5</td>
<td>29,4 %</td>
<td>2,95</td>
<td>3,50</td>
<td>1,42</td>
</tr>
<tr>
<td>160</td>
<td>4</td>
<td>42,8 %</td>
<td>4,04</td>
<td>4,29</td>
<td>1,29</td>
</tr>
<tr>
<td>161</td>
<td>6</td>
<td>63,0 %</td>
<td>5,67</td>
<td>5,71</td>
<td>1,38</td>
</tr>
<tr>
<td>162</td>
<td>8</td>
<td>77,5 %</td>
<td>6,86</td>
<td>8,88</td>
<td>1,38</td>
</tr>
</tbody>
</table>
Рис. 3.70. Кінетика полімеризації St в присутності сполуки 2.7 а

При полімеризації стирену контроль над молярною масою зберігається лише до 24 % конверсії, потім вона починає відхилятися від теорії в бік збільшення (рис. 3.72). Тим не менше дисперсність залишається нижчою 1,5 до кінця полімеризації. Контроль над полімеризацією метилакрилату зберігається до 63 % конверсії мономеру (рис. 3.73), в цьому випадку дисперсність також залишається відносно високою — близько 1,4.

Рис. 3.72. Еволюція M_n та D в ході полімеризації St зі сполукою 2.7 а

ГПХ хроматограми зразків полістирену (рис. 3.74) мають симетричний профіль лише на початку реакції. В подальшому вони починають розширюватись, демонструючи відхилення від класичного механізму RAFT полімеризації. Зразки PMA демонструють мономодальний MMP до 63 %
конверсії мономеру з подальшою появою “плеча” в області вищих молярних мас, як показано на рис. 3.75.

На рис. 3.76 наводиться суперпозиція ¹¹⁹Sn ЯМР спектрів вихідного RAFT агенту 2.7 а, реакційних сумішей отриманих у ході полімеризації стирену та метилакрилату, а також двох модельних сполук: 2.7 б для PSt і 2.7 е для PMA (детальні еволюції ¹¹⁹Sn ЯМР спектрів наведені в додатках 114 та 115). Вони демонструють поступове вичерпання вихідного регулятора з поступовим зменшенням інтенсивності його сигналу з хімічним зсувом при -191,0 м.ч. та одночасною появою груп сигналів в області -184..-185 м.ч. для PMA (показано червоним) та -193..-195 м.ч. для PSt (показано синім). Форма сигналів аналогічна виявлений у ³¹Р ЯМР спектрах PSt та PMA отриманих виходячи зі сполук 2.4 а-f і пояснюється атактичністю полімерного ланцюга. Хімічні зсуви PMA та PSt зміщені в бік відповідних модельних сполук у порівнянні з вихідним RAFT агентом. До того ж на початкових стадіях полімеризації метилакрилату в ¹¹⁹Sn ЯМР вдається виокремити пік із хімічним зсувом -186 м.ч., який швидше за все належить моноаддукту зі структурою дуже близькою до сполуки 2.7 е.

Ці спектри також демонструють утворення додаткових піків у ході обох полімеризацій. Так, утворення біс(трифенілстаніл)сульфіду підтверджується появою вузького синглету з хімічним зсувом близько -53 м.ч. У спектрах PSt спостерігається іще один додатковий пік з хімічним зсувом -82,9 м.ч.
Інтенсивність цього сигналу зростає в ході полімеризації синхронно з втратою контролю над молярною масою. Вигляд цього піку дозволяє висунути припущення щодо утворення низькомолекулярного продукту деградації ω-кінцевої групи. До того ж зафіксований хімічний зсув дуже близький до описаного для біс(трифенілстаніл)оксиду (Ph3Sn)2O, а саме -83,1 м.ч. [152]. Таким чином, деградація триарилстананкарбодііатів набуває суттєвого значення в разі довготривалих полімеризацій при 60 °C.

Рис. 3.76. Суперпозиція 119Sn{1H} ЯМР спектрів RAFT агентів 2.7 a, b, e та реакційних сумішей отриманих протягом полімеризації MA та St

3.2.4. Полімеризації за участю продуктів термічного розкладу

Виходячи з можливості утворення триарилстанілсульфідів внаслідок термічного розкладу триарилстананкарбодііатів під час полімеризації, ми вирішили перевірити їхнє відношення до радикальної полімеризації. Для цього було проведено дві серії випробувань у класичних умовах RAFT полімеризації з концентраціями вихідних сполук наведеними в таблиці 3.16.
Таблиця 3.16

Концентрації реагентів для полімеризацій 163–172

<table>
<thead>
<tr>
<th>Експерименти</th>
<th>163–167</th>
<th>168–172</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA</td>
<td>2.13</td>
<td>2.14</td>
</tr>
<tr>
<td>[МА]₀, М</td>
<td>2,44</td>
<td>2,44</td>
</tr>
<tr>
<td>[CTA]₀, М</td>
<td>0,0108</td>
<td>0,0109</td>
</tr>
<tr>
<td>[АІБН]₀, М</td>
<td>0,0022</td>
<td>0,0022</td>
</tr>
</tbody>
</table>

Результати полімеризацій, а також характеристики отриманих сполук наведені в таблиці 3.17. Швидкість обох полімеризацій значно менша, аніж у випадку повністю неконтрольованої полімеризації, що вказує на реакційну здатність сполук 2.13 та 2.14 як агентів передачі ланцюга.

Таблиця 3.17

Результати отримані в ході полімеризацій 163–172

<table>
<thead>
<tr>
<th>Експеримент</th>
<th>t, год</th>
<th>конв.</th>
<th>Mn, кДа</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>1</td>
<td>22,1 %</td>
<td>94,92</td>
<td>2,29</td>
</tr>
<tr>
<td>164</td>
<td>2</td>
<td>41,6 %</td>
<td>87,78</td>
<td>2,12</td>
</tr>
<tr>
<td>165</td>
<td>4</td>
<td>61,6 %</td>
<td>70,63</td>
<td>2,25</td>
</tr>
<tr>
<td>166</td>
<td>6</td>
<td>69,4 %</td>
<td>59,97</td>
<td>2,44</td>
</tr>
<tr>
<td>167</td>
<td>12</td>
<td>88,4 %</td>
<td>48,68</td>
<td>2,74</td>
</tr>
<tr>
<td>168</td>
<td>1</td>
<td>24,4 %</td>
<td>110,20</td>
<td>2,18</td>
</tr>
<tr>
<td>169</td>
<td>2</td>
<td>43,1 %</td>
<td>94,90</td>
<td>2,20</td>
</tr>
<tr>
<td>170</td>
<td>4</td>
<td>64,7 %</td>
<td>72,28</td>
<td>2,41</td>
</tr>
<tr>
<td>171</td>
<td>9</td>
<td>84,5 %</td>
<td>51,70</td>
<td>2,68</td>
</tr>
<tr>
<td>172</td>
<td>16</td>
<td>93,0 %</td>
<td>40,77</td>
<td>3,09</td>
</tr>
</tbody>
</table>

Молярна маса полімеру (рис. 3.77–3.78) в обох випадках лінійно зменшується з ростом конверсії мономеру, що вказує на механізм незворотної передачі ланцюга [153]. Тим не менше, високі значення дисперсності вказують на низьку ефективність цих сполук в ролі CTA.
На користь механізму полімеризації з незворотною передачею ланцюга свідчить і ГПХ утворених полімерних зразків (рис. 3.79–3.80) — мертві полімерні ланцюги з високою молярною масою, які утворюються на початку полімеризації, залишаються мертвими до кінця всього процесу.

Рис. 3.77. Еволюція M_n та D в ході полімеризації MA в присутності 2.13 полімеризації MA в присутності 2.14

Рис. 3.78. Еволюція M_n та D в ході полімеризації MA в присутності 2.14

Рис. 3.79. Суперпозиція хроматограм РМА зразків (експ. 163–167) Рис. 3.80. Суперпозиція хроматограм РМА зразків (експ. 168–172)
3.2.5. Визначення констант передачі ланцюга

Отримавши такі разючі відмінності в ступені контролю над полімеризацією, ми вирішили також визначити значення констант передачі ланцюга C_r на CTA для різних мономерів. Чи не найкращі результати для RAFT агентів дає метод порівняння швидкостей споживання мономеру та регулятора на початковому етапі полімеризації [154]. При цьому значення C_r визначається як нахил прямої $\ln[\text{CTA}] \sim \ln[\text{M}]$, як показано на рис. 3.81.

Для визначення кінетичних параметрів ініціалізації RAFT агенту 2.7 а були проведені експерименти 173–193 за умов, описаних вище, з використанням дейтерованого бензену в ролі розчинника для St та MA і 1,4-діоксану — для акриламідів. Для визначення концентрацій реагентів знову ж таки було використано 1Н ЯМР. Отримані дані наведені в таблиці 3.18. Було відібрано по 3–4 експериментальних точки з конверсією мономеру не вище 10 % для кожної серії випробувань.

На рис. 3.81 наведені залежності між концентраціями сполуки 2.7 а та п’яти мономерів у модифікованих логарифмічних координатах. Як було сказано вище, їх нахил відповідає значенню константи передачі ланцюга для конкретного випадку. Найнижчі значення C_r зареєстровано для метилакрилату та стирену (17,4 та 18,3 відповідно), що напряму пов’язано з мінімальним індукційним періодом та помірним контролем над полімеризацією. Для DMAA та NIPAM отримано помірні значення (39,5 та 78,0 відповідно). Нарешті, найвище значення $C_r = 147,9$ виявлено для полімеризації TOA. Воно означає, що ймовірність передачі ланцюга на RAFT агент приблизно в 150 разів вища ймовірності подовження полімерного ланцюга на одну мономерну ланку. На практиці це проявляється в тривалому (до 3 год) індукційному періоді та винятково хорошому контролі над полімеризацією.
Результати отримані в ході експериментів 173–193.

<table>
<thead>
<tr>
<th>Мономер (М)</th>
<th>Експеримент</th>
<th>t, хв</th>
<th>[M], М</th>
<th>[2.7 a], М</th>
<th>ln[M]</th>
<th>−ln[2.7 a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>173</td>
<td>0</td>
<td>6,89</td>
<td>0,100</td>
<td>1,93</td>
<td>2,30</td>
</tr>
<tr>
<td>St</td>
<td>174</td>
<td>60</td>
<td>6,78</td>
<td>0,079</td>
<td>1,91</td>
<td>2,54</td>
</tr>
<tr>
<td>St</td>
<td>175</td>
<td>120</td>
<td>6,71</td>
<td>0,062</td>
<td>1,90</td>
<td>2,78</td>
</tr>
<tr>
<td>St</td>
<td>176</td>
<td>240</td>
<td>6,59</td>
<td>0,045</td>
<td>1,89</td>
<td>3,10</td>
</tr>
<tr>
<td>MA</td>
<td>177</td>
<td>0</td>
<td>8,35</td>
<td>0,088</td>
<td>2,12</td>
<td>2,43</td>
</tr>
<tr>
<td>MA</td>
<td>178</td>
<td>30</td>
<td>8,28</td>
<td>0,061</td>
<td>2,11</td>
<td>2,80</td>
</tr>
<tr>
<td>MA</td>
<td>179</td>
<td>60</td>
<td>8,07</td>
<td>0,040</td>
<td>2,09</td>
<td>3,23</td>
</tr>
<tr>
<td>MA</td>
<td>180</td>
<td>90</td>
<td>7,85</td>
<td>0,028</td>
<td>2,06</td>
<td>3,57</td>
</tr>
<tr>
<td>DMAA</td>
<td>181</td>
<td>0</td>
<td>5,31</td>
<td>0,027</td>
<td>1,67</td>
<td>3,61</td>
</tr>
<tr>
<td>DMAA</td>
<td>182</td>
<td>15</td>
<td>5,27</td>
<td>0,016</td>
<td>1,66</td>
<td>4,16</td>
</tr>
<tr>
<td>DMAA</td>
<td>183</td>
<td>30</td>
<td>5,23</td>
<td>0,009</td>
<td>1,65</td>
<td>4,69</td>
</tr>
<tr>
<td>DMAA</td>
<td>184</td>
<td>45</td>
<td>5,17</td>
<td>0,004</td>
<td>1,64</td>
<td>5,58</td>
</tr>
<tr>
<td>NIPAM</td>
<td>185</td>
<td>0</td>
<td>10,04</td>
<td>0,068</td>
<td>2,31</td>
<td>2,69</td>
</tr>
<tr>
<td>NIPAM</td>
<td>186</td>
<td>15</td>
<td>9,91</td>
<td>0,050</td>
<td>2,29</td>
<td>2,99</td>
</tr>
<tr>
<td>NIPAM</td>
<td>187</td>
<td>30</td>
<td>9,80</td>
<td>0,034</td>
<td>2,28</td>
<td>3,38</td>
</tr>
<tr>
<td>NIPAM</td>
<td>188</td>
<td>60</td>
<td>9,60</td>
<td>0,016</td>
<td>2,26</td>
<td>4,11</td>
</tr>
<tr>
<td>NIPAM</td>
<td>189</td>
<td>90</td>
<td>9,44</td>
<td>0,007</td>
<td>2,24</td>
<td>4,89</td>
</tr>
<tr>
<td>TOA</td>
<td>190</td>
<td>0</td>
<td>2,12</td>
<td>0,020</td>
<td>0,75</td>
<td>3,91</td>
</tr>
<tr>
<td>TOA</td>
<td>191</td>
<td>30</td>
<td>2,09</td>
<td>0,015</td>
<td>0,74</td>
<td>4,23</td>
</tr>
<tr>
<td>TOA</td>
<td>192</td>
<td>60</td>
<td>2,08</td>
<td>0,010</td>
<td>0,73</td>
<td>4,61</td>
</tr>
<tr>
<td>TOA</td>
<td>193</td>
<td>120</td>
<td>2,07</td>
<td>0,004</td>
<td>0,73</td>
<td>5,43</td>
</tr>
</tbody>
</table>

Додатково, ми вирішили порівняти отримані значення з константами передачі ланцюга на продукти термічного розкладу сполуки 2.7 а, а саме сульфіди 2.13 та 2.14. Оскільки Стр під час полімеризації метилакрилату в присутності цих двох сполук повинні бути значно меншими одиниці, для їх визначення ми скористалися методом Майо [154]. Для цього було проведено ряд
полімеризацій метилакрилату з варіацією початкових концентрацій сполук 2.13 та 2.14 і однаковими концентраціями мономеру та ініціатора. Полімеризацію проводили до досягнення приблизно 5 % конверсії мономеру, після чого визначали ступінь полімеризації отриманого РМА за допомогою ГПХ. Отримані результати наведені в таблиці 3.19.

Результати отримані в ході експериментів 194–200.

<table>
<thead>
<tr>
<th>СТА</th>
<th>Експеримент</th>
<th>[CTA]₀, M</th>
<th>[CTA]₀/[M]₀</th>
<th>Mₙ, кДа</th>
<th>DPₙ</th>
<th>1/DPₙ, ∙10⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>194</td>
<td>0,0082</td>
<td>0,0036</td>
<td>104,75</td>
<td>1218</td>
<td>8,21</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>0,0139</td>
<td>0,0061</td>
<td>90,53</td>
<td>1053</td>
<td>9,50</td>
</tr>
<tr>
<td></td>
<td>196</td>
<td>0,0182</td>
<td>0,0080</td>
<td>74,14</td>
<td>862</td>
<td>11,6</td>
</tr>
<tr>
<td></td>
<td>197</td>
<td>0,0332</td>
<td>0,0145</td>
<td>50,29</td>
<td>585</td>
<td>17,10</td>
</tr>
<tr>
<td>2.14</td>
<td>198</td>
<td>0,0070</td>
<td>0,0028</td>
<td>130,70</td>
<td>1520</td>
<td>6,58</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>0,0100</td>
<td>0,0040</td>
<td>127,03</td>
<td>1477</td>
<td>6,77</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0,0158</td>
<td>0,0064</td>
<td>118,95</td>
<td>1383</td>
<td>7,23</td>
</tr>
</tbody>
</table>

Рис. 3.81. Визначення Стр для 2.7 а за допомогою кінетичного методу

Графіки Майо для обох сполук наведені на рис. 3.82. Як і очікувалось, Стр на сульфіди 2.13 та 2.14 мають дуже низькі значення — 0,084 та 0,018, відповідно. Таким чином, ймовірність передачі ланцюга на продукти розкладу в 200–1000
разів менша, аніж на вихідну сполуку 2.7 a, що дозволяє ігнорувати їх вплив на контроль над полімеризацією.

3.3. Висновки до розділу 3

Протягом трьох років підготовки дисертаційної роботи було значно вдосконалено методологію проведення полімеризаційних тестів. Оптимізований протокол включає полімеризацію в звичайні ампули для ЯМР спектроскопії з використанням дейтерованих розчинників. Використання цього підходу дозволяє значно покращити якість спектрів, а комбінація його з роботизованими самплерами для ЯМР та ГПХ приладів дозволяє скоротити затрати людського часу на одну пробу з 2 год до 30 хв та скоротити її собівартість до 10 €.

З використанням оптимізованого протоколу проведено ряд полімеризацій стирилу, бутил- та метилакрилату в присутності фосфорилметандітіоатів та бензилтрифенілстананкарбодітіоату з використанням напів-онлайн 31P та 119Sn ЯМР моніторингу. Ця методологія показала дуже хороші результати для вивчення трансформацій вихідного RAFT агенту, встановлення стабільності ω-кінцевої групи полімеру, а також для ідентифікації побічних реакцій.

Фосфорилметандітіоати продемонстрували високу ефективність у RAFT полімеризації “більш активаціонних” мономерів. На основі порівняння шести CTA з різними варіантами заміщення навколо фосфору встановлено, що найбільший потенціал для подальшого використання в ролі RAFT агентів мають (дициклогексилфосфорил)метандітіоат та (ди(піперидин-1-іл)фосфорил)-метандітіоати. В той же час (біс(діізопропіламіно)фосфорил)метандітіоат продемонстрував незадовільну ефективність внаслідок побічних реакцій викликаних, швидше за все, передачею ланцюг на ізопропільні групи.

Як і очікувалось, використання трифенілстананкарбодітіоатів у RAFT полімеризації має ряд обмежень, у зв’язку з їх низькою термічною стабільністю. Тим не менше вони продемонстрували гарні результати при полімеризації високореакційноздатних гіdroфобних акриламідів.
Негативний вплив підвищення температури був підтверджений за допомогою полімеризації з варіацією умов нагрівання. Дійсно, підвищення температури з 60 до 70 °C призводить до стрибкоподібної втрати контроль над полімеризацією.

Показано, що продукти термічного розкладу трифенілстананкарбодитіоатів можуть брати участь у полімеризації відповідно до механізму незворотньої передачі ланцюга, проте вимірювання констант передачі ланцюга показало, що активності трифенілстанілсульфідів у сотні разів нижчі активності бензилтрифенілстананкарбодитіоату. Значення C_{tr}, визначені для бензил-трифенілстананкарбодитіоату, кореляють із результатами полімеризаційних тестів, особливо з тривалостями індукційних періодів на початку полімеризації.

У цілому, на основі отриманих результатів можна сказати, що і фосфорилметандитіоати, і триарилстананкарбодитіоати в RAFT полімеризації проявляють активність притаманну дитіобензоатам. Тим не менше, подальша робота в напрямку (діалкілфосфорил)метандитіоатів може привести до отримання нових високоенергетичних RAFT агентів із можливістю використання ^{31}P ЯМР у ролі окремого інформаційного каналу для напів-онлайн або навіть онлайн моніторингу полімеризації.
РОЗДІЛ 4

СИНТЕЗИ ФЛУОРЕСЦЕНТНИХ RAFT АГЕНТІВ

4.1. Основні положення

Окрім синтезу гомо- та кополімерів із контролюваною молярною масою та низькою дисперсністю, інша суттєва галузь використання RAFT полімеризації — створення комплексних структур на основі полімерів. Використання модифікованих RAFT агентів дозволяє отримувати полімерні ланцюги, до α-кінця яких прив’язані різноманітні біоактивні молекули, ліганди для зв’язування металів, флуоресцентні мітки тощо [5–8]. Останній підхід має виняткове значення, оскільки дозволяє отримувати флуоресцентні полімери з одним і лише одним флуорофором на весь ланцюг [54, 155].

Виходячи з цього, ми вирішили перевірити можливість адаптації запропонованих нами фосфоровмісних RAFT агентів для введення флуоресцентних барвників до складу полімерів. В якості платформи для модифікації було обрано (ди(піперидин-1-іл)фосфорил)метандитіоат 2.4 e, опираючись на його високу ефективність у контролюваній радикальній полімеризації та синтетичну доступність.

При виборі репрезентативного флуоресцентного барвника ми керувалися рядом критеріїв, таких як: хімічна інертність в умовах RAFT полімеризації, функціональна група для зв’язування з полімером без втрати флуоресценції, а також низька вартість. У результаті був обраний 3-(4-амінофеніл)-7-(діетіламіно)-2H-хромен-2-он 4.5, оскільки він знаходить вжиток у синтезі флуоресцентних зондів [156] і має ароматичну аміногрупу, яка може служити для зв’язування з R-групою RAFT агенту. Вона достатньо віддалена від кумаринового ядра, щоб її модифікація не впливалала на флуоресцентніластивості. До того ж цей барвник характеризується досить низькою молярною масою, високою хімічною інертністю і, що важливо, низькою вартістю та простотою приготування.
4.2. Синтез флуоресцентних RAFT агентів

На жаль, літературний метод синтезу амінокумарину 4.5 далекий від досконалості [156]. Він складається з трьох кроків із виділенням і очисткою кожної проміжної сполуки та остаточним виходом всього 24 %. Тому ми вирішили дещо модифікувати цей синтез, як показано на схемі 4.1. Перший крок полягає в конденсації Кновенагеля 4-нітрофенілацетонітрилу 4.1 та 4-(діетиламіно)саліцилового альдегіду 4.2 в присутності каталітичних кількостей піперидину. Після видалення надлишку розчинника, утворений імінокумарин 4.3 гідролізують за допомогою кип'ятіння з соляною кислотою. Негайно після цього нітрогрупу отриманої сполуки 4.4 відновлюють станум(II) хлоридом, що дозволяє одержати амінокумарин 4.5 з виходом 69 %. Цей синтез був проведений для кількості 11 г, проте він може бути масштабований.

Схема 4.1

Амід 4.6 був отриманий із виходом 86 % за допомогою ацилювання 2-бромопропіонілбромідом аміногрупи кумарину 4.5 у м’яких умовах, як показано на схемі 4.2.

Структури сполук 4.5 та 4.6 були підтверджені за допомогою ІЧ і ЯМР спектроскопії та МСВР. Додатково, їх молекулярні структури були встановлені за допомогою РСД (рис. 4.1).
ІЧ спектр сполуки 4.5 містить характеристичні смуги поглинання при 3444 та 3353 см\(^{-1}\) (NH\(_2\)) та 1688 см\(^{-1}\) (спряжений карбоніл). Отримані ЯМР спекти співпадають із описаними в роботі [156]. Хімічний зсув протону в четвертому положенні кумаринової системи 7,60 м.ч., протони амінофенільного кільця проявляються в вигляді двох дублетів при 7,52 та 6,71 м.ч., а обмінювані протони аміногрупи відповідають розширеному синглету з центром при 3,7 м.ч. МСВР містить інтенсивний пік молекулярного йону з масою 309,1607, яка співпадає з теоретично розрахованою.

ІЧ спектр аміду 4.6 містить смуги поглинання при 3318 см\(^{-1}\) (NH), 1688 см\(^{-1}\) (спряжений карбоніл кумарину) та 1678 см\(^{-1}\) (карбоніл аміду). \(^1\)Н ЯМР спектр характеризується появою нового сигналу NH протону з хімічним зсувом 10,42 м.ч., а також зміщенням сигналів протонів кумаринової системи в слабке поле на 0,1..0,4 м.ч. При цьому сигнали протонів фенільної групи зазнають найбільших змін — вони зсуваються в область 7,63..7,72 м.ч. Аналогічні зміни торкаються і \(^13\)С ЯМР спектру. Маса молекулярного йону в МСВР має значення 445,0940, що співпадає з розрахованим значенням.

Рис. 4.1. Структури сполук 4.5 (зліва) та 4.6 (справа) згідно результатів РСД
Отримавши флуоресцентну мітку 4.6, ми вирішили спочатку випробувати її в алкілованій комерційно доступному O-етилксантогенату калію (схема 4.3). В результаті було отримано оранжевий ксантат 4.7 з виходом 70%.

Опираючись на цей позитивний результат, ми перейшли до синтезу цільового фосфорилметандитіоату. Для цього амід 4.6 було оброблено еквівалентною кількістю (ди(піперидин-1-іл)фосфорил)метандитіоату літію 2.3 d, отриманого безпосередньо перед реакцією за методикою описаною в частині 2.1. Цільовий флуоресцентний RAFT агент 4.8 був отриманий із виходом 50% у вигляді червоних кристалів. Забарвлення цієї сполуки виявляється комбінацією оранжевого та рожевого кольорів кумаринового та (ди(піперидин-1-іл)фосфорил)метандитіоатного фрагментів, відповідно.

![Схема 4.3](image)

Структури сполук 4.7 та 4.8 були підтверджені за допомогою ІЧ і ЯМР спектроскопії та МСВР. Додатково, їх молекулярні структури були встановлені за допомогою РСД (рис. 4.2).

ІЧ спектр ксантату 4.6 містить смуги поглинання при 3328 см⁻¹ (NH), 1685 см⁻¹ (спряжений карбоніл кумарину), 1613 см⁻¹ (карбоніл аміду) і 1044 см⁻¹ (тіокарбоніл). Заміна брому на сірку веде до значних змін у ¹H ЯМР спектрі, а саме: зміщення NH-протону в сильне поле до 8,42 м.ч., протону в четвертому положенні кумаринової системи до 7,26 м.ч., а також помірне зміщення сигналів
інших протонів у сильне поле. Маса молекулярного йону в МСВР має значення 485,1568, що співпадає з розрахованим значенням із точністю 99,9999 %.

У той же час ІЧ спектр сполуки 4.7 характеризується смугами при 3246 см⁻¹ (NH), 1712 см⁻¹ (карбоніл аміду), 1678 см⁻¹ (спряжений карбоніл кумарину), 1212 см⁻¹ (P=O) та 1067 см⁻¹ (тіокарбоніл). Хімічні зсуви протонів кумаринової системи та фенільного кільця в ¹H ЯМР мають практично такі ж значення, як і в разі ксантату 4.6. По суті вся різниця між спектрами цих двох сполук зводиться до різних наборів сигналів карбодіатного фрагменту. ³¹P ЯМР спектр має вигляд синглету з хімічним зсувом 14,8 м.ч., що дещо відрізняється від 14,1 м.ч. для сполук 2.4 d,e. Маса молекулярного йону в МСВР має значення 655,2534, що співпадає з теоретично розрахованим значенням.

Рис. 4.2. Структури сполук 4.7 (згори) та 4.8 (внизу) згідно результатів РСД ЯМР спектри та детальні описи результатів РСД сполук 4.5–4.8 наведені в додатках 116–136.
4.3. Синтез 3-(4-амінофеніл)-7-(діетиламіно)-2-етокси-2H-бензо[e][1,2]оксафосфінін-2-оксиду

Вивчаючи літературу, ми знайшли можливість синтезу аналогу амінокумарину 4.5 із заміною кумаринової карбонільної групи на фрагмент фосфонової кислоти [158–160]. Подібні сполуки представляють значний інтерес з точки зору фосфорорганічної хімії, тому ми вирішили дослідити одну з них, а саме фосфакумарин 4.12, у контексті синтезу флуоресцентних RAFT агентів.

Для синтезу цільової сполуки нами було використано модифікацію методу приготування сполуки 4.5 [156]. Перша стадія — конденсація Кновенагеля 4-(діетиламіно)саліцилової кислоти 4.2 із діетил(4-нітробензил)фосфонатом 4.9 із подальшою циклізацією інтермедіату 4.10. Цільовий фосфакумарин 4.11 вдалося отримати з виходом 70 % у вигляді фіолетових кристалів.

Подальше відновлення нітрогрупи дозволило отримати амінофосфа- кумарин 4.12 із виходом 70 %. На жаль, спроби кристалізації цієї сполуки не зазнали успіху, і вона була отримана в вигляді аморфного оранжевого порошку.

Структури сполук 4.11 та 4.12 були підтверджені за допомогою ЯМР спектроскопії та МСВР. Додатково, молекулярна структура фосфокумарину 4.11 була встановлена за допомогою РСД (рис. 4.3).
У цілому, 1Н ЯМР спектр фосфакумарину 4.11 нагадує спектр класичного аналогу 4.5, проте слід відзначити певні особливості, що пов’язані з введенням атома фосфору. В першу чергу, завдяки індуктивному ефекту фосфору, хімічні зсуви протонів у 4, 5 та 7 положеннях бензо[e][1,2]оксафосфінінового фрагменту зсуваються в сильне поле на 0,15..0,3 м.ч. у порівнянні з бензопіроновим циклом. Сигнал гідрогену в четвертому положенні зсунутий на 0,8 м.ч. і додатково розщеплюється на дублет із константою спин-спінової взаємодії $^3J_{P,H} = 38,9$ Гц, характеристикою для оксафосфінінового циклу [161]. 13C{1Н} ЯМР загалом демонструє аналогічні тенденції, але в цьому випадку основний інтерес представляє спин-спінова взаємодія карбон-фосфор, причому значення констант розщеплення послужили важливим джерелом для співвіднесення сигналів. 31P ЯМР спектр представлений дублетом триплетів з хімічним зсувом в області характеристичній для фосфонових кислот, а саме 9,5 м.ч. та КССВ фосфор-гідроген 38,9 та 9,0 Гц. Мак-спектр високої роздільної здатності містить інтенсивний пік молекулярного йону з масою 403,1423, яка чітко співпадає з теоретично розрахованою.

У структурі сполуки 4.11 (рис. 4.3) в першу чергу слід звернути увагу на пірамідальну конфігурацію sp3-гібридизованого фосфору, на відміну від планарного sp2-гібридизованого карбону в кумаринах. У зв’язку з цим, а також дещо вищим ковалентним радіусом фосфору, планарність оксафосфінінового циклу порушена з виходом атома фосфору за межі площини циклу. В цілому конформація наближається до конформації “конверт” для циклопентану зі значенням двохгранного кута 22,34 °.

Відновлення нітрогрупи супроводжується рядом суттєвих змін в 1Н ЯМР спектрі, а саме: появою розширеного синглету протонів аміногрупи з хімічним зсувом 4,44 м.ч. та зміщенням сигналів протонів бензо[e][1,2]оксафосфінінового фрагменту в сильне поле. Додатково, хімічний зсув дублету триплетів у 31P ЯМР спектрі зсувається до 11,1 м.ч. Елементний склад амінофосфакумарину 4.12 однозначно підтверджується значенням маси молекулярного йону в МСВР.
4.4. Синтез флуоресцентних полімерів

Логічним продовженням дослідження флуоресцентного RAFT агенту 4.8 стала полімеризація гідрофільного DMAA. Цей мономер був обраний у зв’язку з його високою леткістю, що дозволяє очищати отриманий полімер за допомогою сушки при зниженому тиску. До того ж гідрофільні поліакриламіди знаходять вжиток у стабілізації різноманітних наночастинок у водних розчинах [54, 162]. Полімеризація (схема 4.5) була здійснена в ЯМР ампулах із використанням суміші 1,4-діоксан – дейтерований бензен у ролі розчинника та АІБН у ролі ініціатора. Вихідні концентрації реагентів ([DMAA]₀ = 3,79 М, [4.8]₀ = 0,0737 М, [АІБН]₀ = 0,0153 М) були підібрани, щоб забезпечити максимальний ступінь полімеризації 50, що відповідає молекулярній масі 5600. Були приготовлені 11 ампул, які нагрівалися при 60 °C протягом 0,5–22 год. Після цього реєструвалися ЯМР спектри реакційних сумішей (рис. 4.4) та визначалися молярні маси полімерів (таблиця 4.1).

Рис. 4.3. Молекулярна структура сполуки 4.11 згідно даних РСД ЯМР спектри сполук 4.11 та 4.12, а також детальний опис результатів РСД сполуки 4.11 наведені в додатках 137–145.

Схема 4.5
Рис. 4.4. Суперпозиція 1Н ЯМР (згори) та 31P{1Н} ЯМР (внизу) спектрів реакційних сумішей отриманих після різних часів полімеризації
Слід зазначити, що при приготуванні основного розчину, ми зіткнулися із недостатньою розчнинністю сполуки 4.8 у суміші мономеру та розчинника. Оскільки гетерогенність реакційної суміші ставила під сумнів рівномірне розподілення RAFT агенту по ЯМР ампулах, базовий розчин нагрівався протягом 30 хв із досягненням повної гомогенізації. Після цього він розфасовувався в ампули, а час їхнього нагрівання розраховувався з урахуванням цих 30 хв.

Сигнал 1,4-діоксану в 1H ЯМР спектрах (синглет при 3,33 м.ч.) був використаний у ролі внутрішнього стандарту для визначення конверсії DMAA в ході полімеризації (рис. 4.4) за зміною інтенсивності вінілових протонів мономеру. 31P ЯМР спектри реакційних сумішей (рис. 4.4) не містять жодних додаткових піків, окрім сигналів фосфорилметандитіоату в області 13,5–14,5 м.ч. Неабиякий інтерес викликає еволюція сигналів протягом перших 5 год реакції. Ініціалізація RAFT агенту супроводжується зменшенням інтенсивності його сигналу при 13,8 м.ч. та появою двох додаткових піків при 14,2 та 14,4 м.ч., які можуть бути віднесені до утворення моно- та діаддукту 4.8-DMAA. Проте, після повного вичерпання вихідного RAFT агенту, ці сигнали також зникають із появою групи двох дещо розширенних сигналів з хімічними зсувами 14,0 та 14,2 м.ч. і співвідношенням інтенсивностей 1:2. Така форма піку характерна для PDMAA і зберігається протягом всього процесу полімеризації.

Таблиця 4.1

Результати отримані в ході полімеризації DMAA зі сполукою 4.8

<table>
<thead>
<tr>
<th>t, хв</th>
<th>DMAA</th>
<th>$M_{n,теор}$, кДа</th>
<th>M_{n}, кДа</th>
<th>DP_{n}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>5 %</td>
<td>0,91</td>
<td>0,64</td>
<td>0</td>
<td>1,07</td>
</tr>
<tr>
<td>270</td>
<td>8 %</td>
<td>1,06</td>
<td>0,76</td>
<td>1,06</td>
<td>1,16</td>
</tr>
<tr>
<td>330</td>
<td>23 %</td>
<td>1,83</td>
<td>1,26</td>
<td>6,11</td>
<td>1,16</td>
</tr>
<tr>
<td>370</td>
<td>28 %</td>
<td>2,08</td>
<td>1,59</td>
<td>9,44</td>
<td>1,13</td>
</tr>
<tr>
<td>500</td>
<td>48 %</td>
<td>3,10</td>
<td>2,24</td>
<td>16,01</td>
<td>1,14</td>
</tr>
<tr>
<td>780</td>
<td>71 %</td>
<td>4,27</td>
<td>3,44</td>
<td>28,13</td>
<td>1,10</td>
</tr>
<tr>
<td>1320</td>
<td>84 %</td>
<td>4,93</td>
<td>4,43</td>
<td>38,13</td>
<td>1,11</td>
</tr>
</tbody>
</table>
Загалом результати аналізу 1H та 31P ЯМР спектрів дуже гарно узгоджуються з точки зору пояснення п’ятигодинного індукційного періоду ініціалізацією RAFT агенту (рис. 4.5). Починаючи з п’ятої години нагрівання, полімеризація описується кінетичною моделлю псевдо-першого порядку з незначним зниженням швидкості в кінці реакції, що викликало зменшенням концентрації радикальних центрів внаслідок термінації.

Спроби аналізу отриманих полімерів за допомогою ГПХ із полярною рухомою фазою (DMФА – 10 mM LiBr) виявилися невдалими внаслідок адсорбційної взаємодії кумаринової α-кінцевої групи з нерухомою фазою. Зважаючи на це, ми пішли на компроміс та використовували хроматографію в ТГФ. Звісно, це викликало певні відхилення внаслідок адсорбційних взаємодій PDMAA з нерухомою фазою, проте результати виявилися цілком прийнятними. На рис. 4.6 наводиться еволюція M_n в полістиренових еквівалентах. Середньочислова молярна маса зростає лінійно в ході полімеризації з незначним відхиленням від теоретично передбачуваних значень. Це відхилення пояснюється відмінностями в гідродинамічних об’ємах PSt та PDMAA. Дисперсність отриманих полімерів (рис. 4.6) поступово знижується в ході полімеризації від 1,16 до 1,10, що вказує на високий ступінь контролю.

Рис. 4.5. Кінетика полімеризації
Рис. 4.6. Еволюція M_n та D
Високий ступінь контролю над полімеризацією підтверджується і виглядом ГПІХ хроматограм (рис. 4.7). Тоді як перші дві із них відповідають низькомолекулярним олігомерам, хроматограми зразків із $M_n > 1.26$ кДа демонструють мономодальний ММР з практично ідеальною формою розподілу Пуассона. Незначні “хвости” в області вищих об’ємів утримання викликані адсорбційними взаємодіями полімеру з нерухомою фазою.

Для підтвердження входження обох частин RAFT агенту до складу полімеру, зразок з $M_n = 1.59$ кДа був вивчений за допомогою MALDI-TOF (рис. 4.8). Маси йонів домінуючої генерації співпадають із очікуванням для полімеру з α- та ω-кінцевими групами утвореними з RAFT агенту 4.8.

Рис. 4.7. Хроматограми PDMAA зразків

Рис. 4.8. Фрагмент MALDI-TOF мас спектру PDMAA 1,59 кДа
Таким чином, нами було отримано шість полімерних зразків, які в узагальненому вигляді представляють собою фосфорилметандитіоат та кумариновий флуорофор розділені полімерним спейсером із довжиною від однієї до 38 мономерних ланок.

4.5. Вивчення флуоресцентних властивостей синтезованих полімерів

Логічним продовженням наших досліджень стало вивчення флуоресцентних властивостей синтезованого RAFT агенту 4.8 та полімерів на його основі. Першим кроком стала реєстрація спектрів поглинання сполук 4.5-4.8 (рис. 4.9). Задля забезпечення еквівалентних умов спектри реєструвалися з використанням розчинів у ТГФ із концентрацією 4,1·10⁻⁶ М. Ідентичність отриманих спектрів вказує на те, що природа замісника, приєднаного до ароматичної аміногрупи, має незначний вплив на спектральні характеристики кумарину. При цьому зареєстровані значення максимуму поглинання (400 нм) та коефіцієнту екстинкції (39400 М⁻¹см⁻¹) співпадають із величинами притаманними для кумаринів у цілому [162].

На рис. 4.10 наводиться суперпозиція спектру збудження флуоресценції (λ_em = 475 нм) та спектрів флуоресценції зі збудженням при трьох різних довжинах хвиль (λ_ex = 380; 400; 420 нм) для RAFT агенту 4.8. Максимум флуоресценції спостерігається при 470 нм, зі значенням Стоксового зсуву 70 нм, що також природньо для кумаринів [162].

В аналогічних умовах були зареєстровані спектри поглинання, флуоресценції та збудження флуоресценції для зразків PDMAA, отриманих виходячи з RAFT агенту 4.8. При цьому аліквота реакційної суміші, отриманої при полімеризації DMAA як описано в частині 4.4, висушувалась при зниженному тиску і розводилась ТГФ до концентрації близько 3,7·10⁻⁶ М. Згідно очікувань, спектри збудження (λ_em = 475 нм) та флуоресценції (λ_ex = 380; 400; 420 нм) для флуоресцентного PDMAA в ТГФ (рис. 4.10) мають такий же вигляд як і для RAFT агенту 4.8.
Рис. 4.9. Спектры поглощения сполук 4.5–4.8 у ТГФ. $\varepsilon_{max} = 39400 \text{ M}^{-1}\text{cm}^{-1}$

Рис. 4.10. Спектры поглощения и флуоресценции сполуки 4.8 у ТГФ

Рис. 4.11. Спектры поглощения и флуоресценции зразка PDMAA в ТГФ

Рис. 4.12. Спектры поглощения зразків PDMAA в ТГФ

Рис. 4.13. Спектры флуоресценции зразків PDMAA у ТГФ ($\lambda_{ex} = 400$ нм)

Рис. 4.14. Спектры збудження зразків PDMAA у ТГФ ($\lambda_{em} = 460$ нм)
На рис. 4.12 наводиться суперпозиція спектрів поглинання реакційних сумішей отриманих у ході полімеризації DMAA в присутності RAFT агенту 4.8. У цілому протягом полімеризації не спостерігається жодних змін у положенні максимумі поглинання чи його інтенсивності. В той же час інтенсивність спектрів флуоресценції (рис. 4.13, 4.14) відчутно змінюється в ході полімеризації. Задля наочності на рис. 4.15 наводиться залежність інтенсивності флуоресценції при 470 нм від часу полімеризації та довжини ланцюга утвореного полімеру. Під час ініціалізації RAFT агенту (перші 4 год) вона поступово знижується на 25%, проте з початком росту ланцюга починається поступове зростання на 50% із досягненням насичення після 8 год. Таким чином, спостерігається поступове посилення флуоресценції з подовженням ланцюга від 1 до 16 мономерних ланок з виходом на насичення.

Рис. 4.15. Еволюція інтенсивності флуоресценції зразків PDMAA залежно від тривалості полімеризації або DP_n в ТГФ (див. рис. 4.13)

У роботі [163] описані результати дослідження гасіння флуоресценції RAFT агентами та RAFT полімерами в розчині. В нашому випадку барвник та RAFT агент містяться на різних кінцях однієї полімерної молекули, а інтенсивність взаємодії між ними визначається лише довжиною спейсера. Наше дослідження оригінальне в цьому плані та потребує глибшого вивчення у майбутньому.
Опираючись на результати робіт [163, 164], синтезовані полімери були передані експертам у галузі флуоресценції для досліджень гасіння флуоресценції, а також вивчення зв’язування полімерів із наночастинками.

4.6. Висновки до розділу 4

Синтезовано флуоресцентну мітку на основі кумарину, виходячи з якої було отримано два флуоресцентних RAFT агенти — ксантат та (ди(піперидин-1-іл)фосфорил)метандитіоат. Структури проміжних та кінцевих сполук встановлені за допомогою РСД.

Синтезовано оригінальний фосфорорганічний аналог кумарину використаного в цій роботі, а також встановлено його будову за допомогою РСД. Тим не менш подальше його дослідження виходить за межі цієї роботи.

Синтезований (ди(піперидин-1-іл)фосфорил)метандитіоат використаний у RAFT полімеризації DMAA з напів-онлайн 31P ЯМР моніторингом, причому він проявив високий ступінь контролю над дисперсністю та молярною масою утвореного полімеру. Будова α- та ω-кінцевих груп полімеру підтверджена за допомогою MALDI-TOF мас-спектрометрії.

Виявлена специфічна залежність між інтенсивністю флуоресценції отриманих полімерів і середньочисловим ступенем полімеризації. Цей феномен швидше за все викликаний переносом енергії між флуорофором та дитіоформіатом на двох протилежних кінцях полімерної молекули, причому інтенсивність гасіння пропорційна довжині полімерного спейсера.
РОЗДІЛ 5
ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

У цьому розділі наводяться методики синтезів, які були здійснені в процесі виконання роботи, умови вимірювання спектральних характеристик синтезованих сполук та аналізу отриманих полімерних зразків.

5.1. Матеріали та устаткування

Розчинники були отримані від Sigma Aldrich, Alfa Aesar або SDS і в разі потреби абсолютновані пропусканням через колонку заповнену активованими молекулярними ситами з розміром пор 4 Å під тиском сухого азоту. Усі вихідні речовини, синтез яких не описаний в експериментальній частині або у відповідних посиланнях, були придбані в компанії Merck, Sigma Aldrich, Alfa Aesar, Polysciences, Wako або Acros та використани без додаткової очистки. Для забезпечення інертної атмосфери використовувались лінія високого вакууму та лінія осушеного аргону. Всі синтези були здійснені з використанням осушеного нагрівання у вакуумі посуду Шленка під атмосферою доочищеного аргону. Розчинники та рідкі реактиви відмірювалися і переносилися за допомогою сухих одноразових шприців. Тверді речовини, чутливі до дії повітря або вологи, зважувались в глобоксі під атмосферою аргону. Для очистки отриманих речовин зазвичай використовувалась флеш хроматографія на силікагелі (пористість 90 Å, розмір частинок 35–70 меш) із використанням як рухомої фази дегазованих розчинників та сухого аргону для створення тиску. ІЧ-спектри вимірювали на спектрометрі Thermo Fischer Nexus 6700 FTIR в ATR режимі (зйомка в тонкому шарі), значення v_{max} (у см$^{-1}$) наведені для основних смуг поглинання. Спектри поглинання в УФ та видимому спектрі зареєстровані на спектрофотометрі Analytik Jena Specord S600, а флуоресценції — на Varian Cary Eclipse. Спектри ЯМР вимірювали на спектрометрах Bruker Avance AMX 300 з робочими частотами 300,13 МГц для ядер 1H,
282,40 МГц — для 19F, 121,49 МГц — для 31P, 98,20 МГц — для 119Sn та 75,47 МГц — для 13C. Основні використовувані розчинники: CDCl$_3$, C$_6$D$_6$, толуен-d_8 та DМСО-d_6. Температура зразків — 25 °C або 60 °C для малорозчинних речовин. Хімічні зсуви виражені за шкалою δ в м.ч. відносно сигналів залишкових розчинників для 1H та 13C{1H} ЯМР [165]. Зовнішній стандарт для хімічних зсувів у спектрах 119Sn, 19F та 31P ЯМР — Me$_4$Sn, C$_6$F$_6$ та 40 % водний розчин H$_3$PO$_4$, відповідно. Mac-спектри високої роздільної здатності були зареєстровані за допомогою часо-пролітного детектора Waters GCT Premier CAB109 із хімічною (CI) або електроспрей-іонізацією (ESI).

АІБН (Fluka, ≥98 %) був двічі перекристалізований з метанолу, висушений під вакуумом до сталої маси та зберігався в холодильнику при +3 °C. Рідкі мономери були очищені від стабілізаторів пропусканням через колонку заповнену нейтральним оксидом алюмінію (активність І за Брокманом) безпосередньо перед використанням. NIPAM (Sigma Aldrich, 97 %) був двічі перекристалізований з суміші толуен – гексан 1:1.

Конверсію мономерів визначали за допомогою 1H ЯМР, середньочислові молярні маси (M_n) та дисперсності (D) зразків полімерів — за допомогою ГПХ [166]. Перед ін’єкцією зразки доводили до концентрації близько 5 мг/мл та фільтрували через нейлонові фільтри з розміром пор 0,22 мкм (рухома фаза ТГФ) або політетрафлуороетиленові з розміром пор 0,45 мкм (рухома фаза ДМФА).

Для аналізу зразків гідрофобних полімерів використовувалась система з термостатованих при 35 °C рефрактометра Waters 2414, багатокутового детектора розсіювання світла mini DAWN TREOS MALS (Wyatt Technology) та двох послідовно з’єднаних колонок (Shodex KF-802.5 та Shodex KF-804). Рухома фаза — ТГФ зі швидкістю потоку 1,0 мл/хв. Система була відкалібрована з використанням стандартних зразків полістирену з молярними масами від 580 до 164500 г/моль. Значення M_n та D для PS та поліакрилатів визначені з використанням стандартної калібровки з корекцією за допомогою коефіцієнтів Марка — Хувінка — Сакуради. В той же час для зразків PTOA використовувались значення отримані за допомогою MALS детектора.
Для аналізу зразків гідрофільних поліакриламідів використовувалась система з чотирьох колонок (Shodex KD-G, Shodex KD-804, Shodex KD-802.5 та Shodex KD-805L) термостатованих при 55 °C і під’єднаних до рефрактометра Optilab Rex (Wyatt Technology) термостатованого при 35 °C, УФ детектора Varian Prostar та багатокутового детектора розсіювання світла mini DAWN TREOS MALS (Wyatt Technology). Рухома фаза: 10 ммоль/л розчин LiBr у ДМФА зі швидкістю потоку 1,0 мл/хв. Значення M_n та D визначені за допомогою MALS детектора.

Для визначення значень DN/dc використовувався диференціальний рефрактометр PSS DnDc-2010 ($\lambda = 620$ нм) термостатований при 35 °C та полімерні зразки з M_n близько 10000.

Мас-спектри полімерів були зареєстровані за допомогою прилада PerSeptive Biosystems Voyager Elite (Framingham, MA) з часо-пролітним детектором (прискорюючий потенціал 25 кВ) та MALDI іонізацією (нітрогеновий лазер: 337 нм, 3 нс). В якості матриці використовувався дітранол.

Рентгеноструктурні аналізи монокристалів здійснено при температурі 193 K або 100 K за допомогою дифрактометрів Bruker Kappa APEX II Quazar, Bruker AXS SMART APEX II або Bruker D8 VENTURE, оснащених 30 Вт джерелом MoKα ($\lambda = 0,71073$ Å) або CuKα ($\lambda = 1,54178$ Å) випромінювання, з використанням φ- та ω- сканування. Дані були інтегровані за допомогою програми SAINT, емпірична корекція абсорбційних даних здійснена за допомогою SADABS [167]. Структура була розшифрована прямим методом за допомогою програми SHELXS-97 і оптимізована в анізотропному наближенні [168].

Увага! Під час більшості маніпуляцій використовуються або утворюються сірковмісні речовини з високою летучістю і интенсивним неприємним запахом. У зв’язку з цим рекомендується використання витяжної шафи з хорошим потоком та негайна дезактивація забрудненого посуду жавелевою водою.
5.2. Синтез цільових сполук

5.2.1. Загальна методика синтезу сполук 2.4 a-f

Розчин \(n \)-бутиллітію (4,0 мл, 6,4 ммоль) прикапують до розчину відповідного фосфіноксиду 2.1 c-f (6,4 ммоль) в 50 мл абсолютного ТГФ при -40 °C (етанолу охолоджений рідким азотом), дозволяють температурі піднятися до 0 °C, і отриманий жовтий розчин перемішують протягом 1 год. Потім при 0 °C прикапують CS\(_2\) (2 мл, 33 ммоль) і продовжують перемішування при кімнатній температурі протягом 30 хв. Червоно-коричневий розчин охолоджують до 10–15 °C та додають відповідний алкілгалогенід (9,45 ммоль) із подальшим перемішуванням протягом 2 год. Отриманий темно-червоний розчин концентрують під зниженим тиском і залишок очищують за допомогою флеш хроматографії (система циклогексан – діетиловий етер 1:4), збираючи рожеву фракцію. Після випарювання на роторному випарювачі, продукт кристалізують з суміші ДХМ – пентан 1:10 або висушують до сталої маси у вакуумі.

(1-Фенілетил)(дифенілфосфорил)метандитіоат 2.4 а

Вихід 0,54 г (22 %). Рожеві кристили. \(^1\)Н ЯМР (CDCl\(_3\), 25 °C, \(\delta \), м.ч.): 1,74 (д.д., \(^3 \)J\(_{Н,Н} = 7,2 \)Гц, \(^4 \)J\(_{Р,Н} = 0,9 \)Гц, 3Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 5,23 (к.д., \(^3 \)J\(_{Н,Н} = 7,2 \)Гц, \(^4 \)J\(_{Р,Н} = 2,1 \)Гц, 1Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 7,25–7,37 (м., 5Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 7,41–7,61 (м., 6Н; 4-Н, 5-Н, (C\(_6\)H\(_5\))\(_2\)P), 7,78–7,91 (м., 4Н; 2-Н, (C\(_6\)H\(_5\))\(_2\)P); \(^31\)P\({^1\text{H}}\) ЯМР (CDCl\(_3\), 25 °C, \(\delta \), м.ч.): 24,9. ІЧ спектр (ν, см\(^{-1}\)): 1190,0 (P=O), 1097,1 (C=С). МСВР (ESI, 30 В, m/z [MH]\(^+\)): знайдено — 383,0685, розраховано для C\(_2\)H\(_2\)O\(_2\)S\(_2\)P — 383,0693.

(1-Фенілетил)(біс(N,N-діізопропіламіно)фосфорил)метандитіоат 2.4 b

Вихід 2,33 г (85 %). Червоні кристили. \(^1\)Н ЯМР (CDCl\(_3\), 25 °C, \(\delta \), м.ч.): 1,09 (д., \(^3 \)J\(_{Н,Н} = 6,8 \)Гц, 6Н; (CH\(_3\))\(_2\)CH), 1,23 (д., \(^3 \)J\(_{Н,Н} = 6,8 \)Гц, 6Н; (CH\(_3\))\(_2\)CH), 1,25 (д., \(^3 \)J\(_{Н,Н} = 6,8 \)Гц, 6Н; (CH\(_3\))\(_2\)CH), 1,29 (д., \(^3 \)J\(_{Н,Н} = 6,8 \)Гц, 6Н; (CH\(_3\))\(_2\)CH), 1,67 (д.д., \(^3 \)J\(_{Н,Н} = 7,2 \)Гц, 5J\(_{Р,Н} = 0,7 \)Гц, 3Н; CH(CH\(_3\))\(_3\)C\(_6\)H\(_5\)), 3,48–3,73 (м., 4Н; (CH\(_3\))\(_2\)CH), 5,04 (к.д., \(^3 \)J\(_{Н,Н} = 7,1 \)Гц, 4J\(_{Р,Н} = 1,8 \)Гц, 1Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 7,09–7,48 (м., 5Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)); \(^{13}\)С\({^1\text{H}}\) ЯМР (CDCl\(_3\), 25 °C, \(\delta \), м.ч.): 20,3 (с,;
CH(\(\text{CH}_3\))C\(6\text{H}_3\)), 22,9 (д., \(3J_{P,C} = 1,8 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\), 23,1 (д., \(3J_{P,C} = 2,1 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\)), 23,4 (д., \(3J_{P,C} = 2,4 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\), 23,6 (д., \(3J_{P,C} = 2,5 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\), 47,19 (д., \(2J_{P,C} = 4,4 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\), 47,23 (д., \(2J_{P,C} = 4,3 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\), 48,4 (д., \(3J_{P,C} = 2,4 \text{ Гц} \); \((\text{CH}_3)_2\text{CH})\), 127,5 (с.; 3-\(C\), \(C_6\text{H}_5\)\), 128,1 (с.; 4-\(C\), \(C_6\text{H}_5\)\), 128,5 (с.; 2-\(C\), \(C_6\text{H}_5\)\), 141,4 (с.; 1-\(C\), \(C_6\text{H}_5\)\), 242,8 (д., \(1J_{P,C} = 126,2 \text{ Гц} \); \(C_6\text{S}_2\));

\(^{31}\text{P}\{^1\text{H}\} \text{ ЯМР } (\text{CDCl}_3, 25^\circ \text{C}, \ \delta \text{, м.ч.})\): 14,9. \(\text{ЯЧ спектр} (\nu, \text{ см}^{-1})\): 1218,0 (P=O), 1092,0 (C=S). MCBP (ESI, 30 B, m/z [MH\(^+\)]): знайдено — 429,2170, розраховано для \(C_{21}H_{38}N_2O_2S_2\text{P} — 429,2163\).

\((1\text{-Фенілетил})(діциклогексилфосфорил)метанадитіоат \text{2.4 c}\)

Вихід 0,86 г (34 %). Рожеві кристали. \(^1\text{H} \text{ЯМР} (\text{CDCl}_3, 25^\circ \text{C}, \ \delta \text{, м.ч.})\): 0,94–2,30 (м., \(22\text{H}; \ \text{C}_6\text{H}_{11}\)), 1,67 (д., \(3J_{\text{H,H}} = 7,1 \text{ Гц} \); 3\(H\); \((\text{CH}_3)\text{C}_6\text{H}_5\)), 5,20 (к.д., \(3J_{\text{H,H}} = 7,1 \text{ Гц} \); \(4J_{\text{P,H}} = 1,5 \text{ Гц} \); 1\(H\); \((\text{CH}_3)\text{C}_6\text{H}_5\)), 7,16–7,38 (м., 5\(H\); \((\text{CH}_3)\text{C}_6\text{H}_5\)); \(^{13}\text{C}\{^1\text{H}\} \text{ ЯМР } (\text{CDCl}_3, 25^\circ \text{C}, \ \delta \text{, м.ч.})\): 20,2 (с.; \((\text{CH}_3)\text{C}_6\text{H}_5\)), 24,8 (д., \(J_{\text{P,C}} = 3,2 \text{ Гц} \); \(C_6\text{H}_{11}\)), 24,9 (д., \(J_{\text{P,C}} = 3,1 \text{ Гц} \); \(C_6\text{H}_{11}\)), 25,2 (д., \(J_{\text{P,C}} = 3,5 \text{ Гц} \); \(C_6\text{H}_{11}\)), 25,5–25,7 (м.; \(C_6\text{H}_{11}\)), 26,1–26,4 (м.; \(C_6\text{H}_{11}\)), 35,9 (д., \(J_{\text{P,C}} = 4,5 \text{ Гц} \); \(C_6\text{H}_{11}\)), 36,7 (д., \(J_{\text{P,C}} = 3,8 \text{ Гц} \); \(C_6\text{H}_{11}\)), 48,0 (д., \(3J_{\text{P,C}} = 1,7 \text{ Гц} \); \((\text{CH}_3)\text{C}_6\text{H}_5\)), 127,67 (с.; 3-\(C\), \(C_6\text{H}_5\)), 127,72 (с.; 4-\(C\), \(C_6\text{H}_5\)), 128,5 (с.; 2-\(C\), \(C_6\text{H}_5\)), 140,2 (с.; 1-\(C\), \(C_6\text{H}_5\)), 237,5 (д., \(1J_{\text{P,C}} = 52,8 \text{ Гц} \); \(C_6\text{S}_2\)); \(^{31}\text{P}\{^1\text{H}\} \text{ ЯМР } (\text{CDCl}_3, 25^\circ \text{C}, \ \delta \text{, м.ч.})\): 51,4. \(\text{ЯЧ спектр} (\nu, \text{ см}^{-1})\): 1164,3 (P=O), 1081,3 (C=S). MCBP (ESI, 30 B, m/z [MH\(^+\)]): знайдено — 395,1626, розраховано для \(C_{21}H_{38}N_2O_2S_2\text{P} — 395,1632\).

\((1\text{-Фенілетил})(діпіперидин-1-іл)фосфорил)метанадитіоат \text{2.4 d}\)

Вихід 1,78 г (70 %). Рожева олія. \(^1\text{H} \text{ЯМР} (\text{CDCl}_3, 25^\circ \text{C}, \ \delta \text{, м.ч.})\): 1,33–1,47 (м., \(4\text{H}; \ 4\)-\(\text{H}\), \(C_5\text{H}_{10}\text{N}\)), 1,47–1,64 (м., \(8\text{H}\)); \(3\)-\(\text{H}\), \(C_5\text{H}_{10}\text{N}\)), 1,71 (к.д., \(3J_{\text{H,H}} = 7,1 \text{ Гц} \); \(5J_{\text{P,H}} = 0,6 \text{ Гц} \); 3\(H\); \((\text{CH}_3)\text{C}_6\text{H}_5\)), 2,94–3,16 (м., \(8\text{H}; \ 2\)-\(\text{H}\), \(C_5\text{H}_{10}\text{N}\)), 5,14 (к.д., \(3J_{\text{H,H}} = 7,1 \text{ Гц} \); \(4J_{\text{P,H}} = 1,7 \text{ Гц} \); 1\(H\); \((\text{CH}_3)\text{C}_6\text{H}_5\)), 7,20–7,41 (м., \(5\text{H}\); \((\text{CH}_3)\text{C}_6\text{H}_5\)); \(^{13}\text{C}\{^1\text{H}\} \text{ ЯМР } (\text{CDCl}_3, 25^\circ \text{C}, \ \delta \text{, м.ч.})\): 20,3 (с.; \((\text{CH}_3)\text{C}_6\text{H}_5\)), 24,5 (д., \(4J_{\text{P,C}} = 0,6 \text{ Гц} \); \(4\)-\(\text{C}\), \(C_5\text{H}_{10}\text{N}\)), 24,6 (д., \(4J_{\text{P,C}} = 0,6 \text{ Гц} \); \(4\)-\(\text{C}\), \(C_5\text{H}_{10}\text{N}\)), 25,7 (д., \(3J_{\text{P,C}} = 4,8 \text{ Гц} \); 3-\(\text{C}\), \(C_5\text{H}_{10}\text{N}\)), 25,8 (д., \(3J_{\text{P,C}} = 5,0 \text{ Гц} \); 3-\(\text{C}\), \(C_5\text{H}_{10}\text{N}\)), 45,49 (д., \(2J_{\text{P,C}} = 6,2 \text{ Гц} \); 2-\(\text{C}\), \(C_5\text{H}_{10}\text{N}\)), 45,51 (д., \(2J_{\text{P,C}} = 6,2 \text{ Гц} \); 2-\(\text{C}\), \(C_5\text{H}_{10}\text{N}\)), 48,6 (д., \(3J_{\text{P,C}} = 2,4 \text{ Гц} \); \((\text{CH}_3)\text{C}_6\text{H}_5\)), 127,6 (с.; 3-\(\text{C}\), \(C_6\text{H}_5\)), 127,8 (с.; 4-\(\text{C}\), \(C_6\text{H}_5\)), 128,5 (с.;
2-С, С₆Н₅, 140,8 (с.; 1-С, С₆Н₅), 235,0 (д., ¹J_P,C = 130,4 Гц; СS₂); ³¹P {¹H} ЯМР (CDCl₃, 25 °C, δ, м.ч.): 14,1. ІЧ спектр (ν, см⁻¹): 1217,7 (P=O), 1083,5 (C=S). МЦВ (ESI, 30 B, m/z [MH⁺]): знайдено — 397,1538, розраховано для C₁₉H₃₀N₂O₅S₂P — 397,1537.

Метил-2-((ди(піперидин-1-іл)фосфорил)карбонотіоїл)сульфаніл)пропаноат 2.4 е

Вихід 1,40 г (58 %). Розжива олія. ¹Н ЯМР (CDCl₃, 25 °C, δ, м.ч.): 1,44–1,61 (м., 12Н; 3-Н, 4-Н, С₅Н₁₀N), 1,56 (д.д., ³J_H,H = 7,4 Гц; ²J_P,H = 1,0 Гц, 3Н; CH(CH₃)CO₂CH₃), 2,92–3,19 (м., 8Н; 2-Н, С₅Н₁₀N), 3,68 (с., 3Н; CH(CH₃)CO₂CH₃), 4,61 (к.д., ³J_H,H = 7,3 Гц, ⁴J_P,H = 1,2 Гц, 1Н; CH(CH₃)CO₂CH₃; ¹³C {¹H} ЯМР (CDCl₃, 25 °C, δ, м.ч.): 15,9 (с.; CH(CH₃)CO₂CH₃), 24,6 (с.; 4-С, С₅Н₁₀N), 25,8 (д., ³J_P,C = 4,9 Гц; 3-С, С₅Н₁₀N), 25,9 (д., ³J_P,C = 5,0 Гц; 3-С, С₅Н₁₀N), 45,62 (д., ²J_P,C = 4,4 Гц; 2-С, С₅Н₁₀N), 45,64 (д., ²J_P,C = 4,4 Гц; 2-С, С₅Н₁₀N), 46,6 (д., ³J_P,C = 2,6 Гц; CH(CH₃)CO₂CH₃), 52,8 (с.; CH(CH₃)CO₂CH₃), 171,1 (с.; CH(CH₃)CO₂CH₃), 235,5 (д., ¹J_P,C = 130,3 Гц; СS₂); ³¹P {¹H} ЯМР (CDCl₃, 25 °C, δ, м.ч.): 14,1. ІЧ спектр (ν, см⁻¹): 1738,7 (C=O), 1217,9 (P=O), 1069,3 (C=S). МЦВ (ESI, 30 B, m/z [MH⁺]): знайдено — 379,1272, розраховано для C₁₅H₂₈N₂O₅S₂P — 379,1279.

Метил-2-((дифенілфосфорил)карбонотіоїл)сульфаніл)пропаноат 2.4 f

Вихід 1,28 г (55 %). Розжива олія. ¹Н ЯМР (CDCl₃, 25 °C, δ, м.ч.): 1,58 (д.д., ³J_H,H = 7,4 Гц, ⁵J_P,H = 0,8 Гц, 3Н; CH(CH₃)CO₂CH₃), 3,68 (с., 3Н; CH(CH₃)CO₂CH₃), 4,68 (к.д., ³J_H,H = 7,3 Гц, ⁴J_P,H = 1,4 Гц, 1Н; CH(CH₃)CO₂CH₃), 7,39–7,50 (м., 4Н; 3-Н, (C₆H₅)₂P), 7,50–7,59 (м., 2Н; 4-Н, (C₆H₅)₂P), 7,77–7,88 (м., 4Н; 2-Н, (C₆H₅)₂P); ¹³C {¹H} ЯМР (CDCl₃, 25 °C, δ, м.ч.): 16,0 (с.; CH(CH₃)CO₂CH₃), 46,8 (д., ³J_P,C = 2,4 Гц; CH(CH₃)CO₂CH₃), 53,0 (с.; CH(CH₃)CO₂CH₃), 128,5 (д., ³J_P,C = 12,6 Гц; 3-С, (C₆H₅)P), 128,6 (д., ³J_P,C = 12,7 Гц; 3-С, (C₆H₅)P), 128,9 (д., ¹J_P,C = 107,3 Гц; 1-С, (C₆H₅)P), 130,0 (д., ¹J_P,C = 106,7 Гц; 1-С, (C₆H₅)P), 132,4 (д., ²J_P,C = 9,4 Гц; 2-С, (C₆H₅)P), 132,6 (д., ²J_P,C = 9,1 Гц; 2-С, (C₆H₅)P), 132,8 (д., ⁴J_P,C = 2,8 Гц; 4-С, (C₆H₅)P), 170,5 (с.; CH(CH₃)CO₂CH₃), 235,3 (д., ¹J_P,C = 74,8 Гц; СS₂); ³¹P {¹H} ЯМР (CDCl₃, 25 °C, δ, м.ч.): 22,9. ІЧ спектр (ν, см⁻¹): 1737,6 (C=O),
1198,9 (P=O), 1095,5 (C=S). МСВР (ESI, 30 В, m/z [MH⁺]): знайдено — 365,0441, розраховано для C₁₇H₁₈O₃S₂P — 365,0435.

5.2.2. Загальна методика синтезу сполук 2.7 i-j

Стехіометричні кількості натрію (0,46 г, 20 ммоль) та нафталену (2,56 г, 20 ммоль) у 50 мл абсолютно го ТГФ перемішують за допомогою магнітної мішалки протягом 4 год. До отриманого темно-зеленого розчину при інтенсивному перемішуванні прикапують розчин трифенілстанілхлориду 2.5 a (3,86 г, 10 ммоль) у 10 мл абсолютно го ТГФ (Увага! Реакція дуже екзотермічна, тому реагент слід додавати дуже повільно) і продовжують перемішування протягом 1 год при кімнатній температурі. При цьому колір розчину змінюється з зеленого на оранжевий із утворенням осаду трифенілстанілнатрію. Потім при 0 °C прикапують CS₂ (2 мл, 33 ммоль), причому колір змінюється на вишнево-червоний, і продовжують перемішування протягом іще 1 год. Отриманий розчин трифенілстананкарбодитіоату натрію 2.6 a розбавляють абсолютно го ТГФ до об’єму близько 100 мл (кінцева концентрація 0,1 моль/л) і використовують у подальшому без додаткової обробки. Ця речовина досить стабільна і може тривалий час зберігатися в холодильнику.

Розчин трифенілстананкарбодитіоату натрію 2.6 a (50 мл, 5 ммоль) прикапують при 0 °C та інтенсивному перемішуванні до відповідного алкілгалогеніду (6 ммоль), і продовжують перемішування протягом 2 год при кімнатній температурі. Потім розчин концентрують під зниженим тиском і залишок двічі промивають 20 мл холодного гексану для видалення нафталену та більшої частини органічних домішок. Червоний залишок очищають за допомогою флеч хроматографії (система пентан – етилацетат з градієнтом концентрації етилацетату від 1% до 50%), збираючи рожеву фракцію. Після концентрування під зниженим тиском, продукт кристалізують з відповідного розчинника (пентан для 2.7 a,b,f,j, гексан для 2.7 g,h, ацетон для 2.7 c,d, киплячий ДХМ для 2.7 i) або сушать у вакуумі до сталої маси (2.7 e).
Бензилтрифенілстананкарбодііотам 2.7 a

Вихід 1,89 г (73 %). Рожеві кристили. \(^1\)Н ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): 4,43 (п.т., \(^4J_{\text{Sn,H}} = 4,2\) Гц, 2Н; CH\(_2\)C\(_6\)H\(_5\)), 6,93 (м., 5Н; CH\(_2\)C\(_6\)H\(_5\)), 7,09–7,19 (м., 9Н; 3-Н, 4-Н, (C\(_6\)H\(_5\))\(_3\)Sn), 7,57–7,81 (м., \(^3J_{\text{Sn,H}} = 50,7\) Гц, 6Н; 2-Н, (C\(_6\)H\(_5\))\(_3\)Sn);
\(^{13}\)С\(^{\text{\(1\)Н}}\) ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): 38,8 (п.т., \(^3J_{\text{Sn,C}} = 12,4\) Гц; CH\(_2\)C\(_6\)H\(_5\)), 127,5 (с.; 3-С, CH\(_2\)C\(_6\)H\(_5\)), 128,7 (с.; 4-С, CH\(_2\)C\(_6\)H\(_5\)), 129,1 (п.т., \(^2J_{\text{Sn,C}} = 55,9\) Гц; 2-С, (C\(_6\)H\(_5\))\(_3\)Sn), 129,5 (с.; 2-С, CH\(_2\)C\(_6\)H\(_5\)), 129,8 (п.т., \(^4J_{\text{Sn,C}} = 12,1\) Гц; 4-С, (C\(_6\)H\(_5\))\(_3\)Sn), 135,7 (с.; 1-С, CH\(_2\)C\(_6\)H\(_5\)), 137,4 (п.т., \(^3J_{\text{Sn,C}} = 38,6\) Гц; 3-С, (C\(_6\)H\(_5\))\(_3\)Sn), 137,8 (п.т., \(^1J_{\text{Sn,C}} = 548\) Гц; 1-С, (C\(_6\)H\(_5\))\(_3\)Sn), 264,7 (с; CS\(_2\)) \(^{119}\)Sn\(^{\text{\(1\)Н}}\) ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): −191,0. ІЧ спектр (\(\nu\), см\(^{-1}\)): 1046,6 (C=S). МСВР (CI, CH\(_4\), m/z [MH\(^+\)]): знайдено — 515,0245, розраховано для C\(_{26}\)H\(_{23}\)S\(_2\)Sn — 515,0259.

(1-Фенілетил)трифенілстананкарбодііотам 2.7 b

Вихід 1,49 г (56 %). Рожеві кристили. \(^1\)Н ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): 1,44 (м., \(^3J_{\text{H,H}} = 7,1\) Гц, 5\(^5\)J_{\text{Sn,H}} = 3,5 Гц, 3Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 5,84 (м., \(^3J_{\text{H,H}} = 7,1\) Гц, \(^4J_{\text{Sn,H}} = 7,3\) Гц, 1Н; CH(CH\(_3\))C\(_6\)H\(_5\)), 6,90–7,08 (м., 5Н; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 7,09–7,19 (м., 9Н; 3-Н, 4-Н, (C\(_6\)H\(_5\))\(_3\)Sn), 7,57–7,81 (м., \(^3J_{\text{Sn,H}} = 51,9\) Гц, 6Н; 2-Н, (C\(_6\)H\(_5\))\(_3\)Sn);
\(^{13}\)С\(^{\text{\(1\)Н}}\) ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): 20,0 (с.; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 46,3 (п.т., \(^3J_{\text{Sn,C}} = 13,3\) Гц; CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 127,6 (с.; 4-С, CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 128,0 (с.; 2-С, CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 128,8 (с.; 3-С, CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 129,1 (п.т., \(^2J_{\text{Sn,C}} = 54,3\) Гц; 2-С, (C\(_6\)H\(_5\))\(_3\)Sn), 129,8 (п.т., \(^4J_{\text{Sn,C}} = 12,1\) Гц; 4-С, (C\(_6\)H\(_5\))\(_3\)Sn), 137,4 (п.т., \(^3J_{\text{Sn,C}} = 38,6\) Гц; 3-С, (C\(_6\)H\(_5\))\(_3\)Sn), 138,0 (п.т., \(^1J_{\text{Sn,C}} = 546\) Гц; 1-С, (C\(_6\)H\(_5\))\(_3\)Sn), 141,3 (с.; 1-С, CH(CH\(_3\))\(_2\)C\(_6\)H\(_5\)), 264,0 (с; CS\(_2\)) \(^{119}\)Sn\(^{\text{\(1\)Н}}\) ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): −192,7. ІЧ спектр (\(\nu\), см\(^{-1}\)): 1040,5 (C=S). МСВР (CI, CH\(_4\), m/z [MH\(^+\)]): знайдено — 533,0482, розраховано для C\(_{27}\)H\(_{25}\)S\(_2\)Sn — 533,0420.

(4-Нітробензил)трифенілстананкарбодііотам 2.7 c

Вихід 2,70 г (80 %). Червоні кристили. \(^1\)Н ЯМР (толуен-\(d_8\), 25 °C, \(\delta\), м.ч.): 4,18 (с.; 2Н; 4-NO\(_2\)C\(_6\)H\(_4\)CH\(_2\)), 6,58 (м., \(^3J_{\text{H,H}} = 8,8\) Гц, \(^6J_{\text{Sn,H}} = 4,5\) Гц, 2Н; 2-Н, 4-NO\(_2\)C\(_6\)H\(_4\)CH\(_2\)), 7,13–7,22 (м., 9Н; 3-Н, 4-Н, (C\(_6\)H\(_5\))\(_3\)Sn), 7,57 (м., \(^3J_{\text{H,H}} = 8,8\) Гц, \(^7J_{\text{Sn,H}} = 4,5\) Гц, 2Н; 3-Н, 4-NO\(_2\)C\(_6\)H\(_4\)CH\(_2\)), 7,60–7,82 (м., \(^3J_{\text{Sn,H}} = 51,6\) Гц, 6Н; 2-Н,
(C₆H₅)₃Sn); ¹³C{¹H} ЯМР (толуен-d₈, 25 °C, δ, м.ч.): 37,2 (п.т., ³Jₚ,ₛ = 12,4 Гц; 4-NO₂C₆H₄CH₂), 123,6 (с.; 2-С, 4-NO₂C₆H₄CH₂), 129,3 (п.т., ²Jₚ,ₛ = 54,8 Гц; 2-С, (C₆H₅)₃Sn), 129,8 (с.; 3-С, 4-NO₂C₆H₄CH₂), 130,1 (п.т., ⁴Jₚ,ₛ = 12,2 Гц; 4-С, (C₆H₅)₃Sn), 137,4 (п.т., ³Jₚ,ₛ = 38,8 Гц; 3-С, (C₆H₅)₃Sn), 137,5 (п.т., ¹Jₚ,ₛ = 547 Гц; 1-С, (C₆H₅)₃Sn), 142,8 (с.; 1-С, 4-NO₂C₆H₄CH₂), 147,3 (с.; 4-С, 4-NO₂C₆H₄CH₂), 264,8 (с.; CSS₂); ¹¹⁹Sn{¹H} ЯМР (толуен-d₈, 25 °C, δ, м.ч.): −187,2. ІЧ спектр (ν, см⁻¹): 1044,0 (C=S). МСБР (СІ, СΗ₄, m/z [MH⁺]): знайдено — 564,0101, розраховано для C₂₆H₂₂NO₂S₂Sn — 564,0114.

(4-Флуоробензил)трифенілтананкарбодитіоат 2.7 d

Вихід 2,06 г (77 %). Рожеві кристили. ¹H ЯМР (толуен-d₈, 25 °C, δ, м.ч.): 4,29 (с., 2H; 4-FC₆H₄CH₂), 6,48–6,62 (м., 2H; 2-H, 4-FC₆H₄CH₂), 6,65–6,75 (м., 2H; 3-H, 4-FC₆H₄CH₂), 7,11–7,24 (м., 9H; 3-H, 4-H, (C₆H₅)₃Sn), 7,56–7,85 (м., ³Jₚ,ₛ = 51,0 Гц; 6H; 2-H, (C₆H₅)₃Sn); ¹³C{¹H} ЯМР (толуен-d₈, 25 °C, δ, м.ч.): 37,8 (п.т., ³Jₚ,ₛ = 12,4 Гц; 4-FC₆H₄CH₂), 115,5 (д., ²Jₚ,ₛ = 21,5 Гц; 3-С, 4-FC₆H₄CH₂), 129,1 (п.т., ²Jₚ,ₛ = 55,8 Гц; 2-С, (C₆H₅)₃Sn), 129,9 (п.т., ⁴Jₚ,ₛ = 12,2 Гц; 4-С, (C₆H₅)₃Sn), 131,1 (д., ³Jₚ,ₛ = 8,1 Гц; 2-С, 4-FC₆H₄CH₂), 131,4 (д., ⁴Jₚ,ₛ = 3,3 Гц; 1-С, 4-FC₆H₄CH₂), 137,4 (п.т., ³Jₚ,ₛ = 38,7 Гц; 3-С, (C₆H₅)₃Sn), 137,7 (п.т., ¹Jₚ,ₛ = 548 Гц; 1-С, (C₆H₅)₃Sn), 162,4 (д., ¹Jₚ,ₛ = 246 Гц; 4-С, 4-FC₆H₄CH₂), 265,0 (с.; CSS₂); ¹⁹F{¹H} ЯМР (толуен-d₈, 25 °C, δ, м.ч.): −115,6; ¹¹⁹Sn{¹H} ЯМР (толуен-d₈, 25 °C, δ, м.ч.): −190,4. ІЧ спектр (ν, см⁻¹): 1050,0 (C=S). МСБР (СІ, СΗ₄, m/z [MH⁺]): знайдено — 537,0179, розраховано для C₂₆H₂₂FS₂Sn — 537,0169.

Метил-2-(((трифенілтанан)карбонатоїд)сульфіл)пропаноат 2.7 e

Вихід 1,88 г (74 %). Рожева олія. ¹H ЯМР (толуен-d₈, 25 °C, δ, м.ч.): 1,26 (м., ³Jₚ,ₛ = 7,1 Гц; 5,29 (м., ³Jₚ,ₛ = 7,3 Гц; 4-С, (C₆H₅)₃Sn), 7,54–7,78 (м., ³Jₚ,ₛ = 52,5 Гц; 6H; 2-H, (C₆H₅)₃Sn); ¹³C{¹H} ЯМР (толуен-d₈, 25 °C, δ, м.ч.): 16,0 (с.; CH(CH₃)CO₂CH₃), 43,9 (п.т., ³Jₚ,ₛ = 13,2 Гц; CH(CH₃)CO₂CH₃), 129,2 (п.т.,
4.23 (п.т., 4 J_{Sn,H} = 2,3 Гц; 2H; CH_{2}CN), 7,46–7,62 (м., 9H; 3-H, 4-H, (C_{6}H_{5})_{3}Sn),
7,64–7,85 (м., 3 J_{Sn,H} = 53,5 Гц; 6H; 2-H, (C_{6}H_{5})_{3}Sn); 13C{[1H] ЯМР (CDCl₃, 25 °C, δ, м.ч.):}
17,9 (п.т., 3 J_{Sn,C} = 12,6 Гц; CH_{2}CN), 114,4 (с.; CH_{2}CN), 129,2 (п.т.,
2 J_{Sn,C} = 57,1 Гц; 2-С, (C_{6}H_{5})_{3}Sn), 130,2 (п.т., 4 J_{Sn,C} = 12,3 Гц; 4-С, (C_{6}H_{5})_{3}Sn),
136,4 (с.; 1-С, (C_{6}H_{5})_{3}Sn), 137,1 (п.т., 3 J_{Sn,C} = 38,6 Гц; 3-С, (C_{6}H_{5})_{3}Sn), 170,7 (с.;
CO_{2}CH_{3}), 262,6 (с.; CS_{2}); ^{119}Sn{[1H] ЯМР (CDCl₃, 25 °C, δ, м.ч.):} –179,5.

Бензилтри-п-толістананкарбодитіоат 2.7 г

Вихід 1,58 г (57 %). Фіолетові кристили. ^{1}H ЯМР (толуен-d₈, 25 °C, δ, м.ч.):
2,09 (с., 9H; CH_{3}C_{6}H_{4}), 4,46 (п.т., 4 J_{Sn,H} = 4,3 Гц; 2H; CH_{2}C_{6}H_{5}), 6,91–6,96 (м., 5H;
CH_{2}C_{6}H_{5}), 7,02 (д., 3 J_{H,H} = 7,3 Гц; 6H, 3-H, (4-CH_{2}C_{6}H_{4})_{3}Sn), 7,69 (м.,
3 J_{Sn,H} = 43,4 Гц; 3 J_{H,H} = 7,9 Гц, 6H; 2-H, (4-CH_{2}C_{6}H_{4})_{3}Sn); 13C{[1H] ЯМР (толуен-d₈,
25 °C, δ, м.ч.):} 21,4 (п.т., 5 J_{Sn,C} = 6,1 Гц; CH_{3}C_{6}H_{4}), 38,9 (п.т., 3 J_{Sn,C} = 12,2 Гц; CH_{2}C_{6}H_{5}), 127,4 (с.; 4-С, CH_{2}C_{6}H_{5}), 128,7 (с.; 2-С, CH_{2}C_{6}H_{5}), 129,5 (с.; 3-С, CH_{2}C_{6}H_{5}), 130,0 (п.т.,
2 J_{Sn,C} = 57,4 Гц; 2-С, (4-CH_{3}C_{6}H_{4})_{3}Sn), 134,4 (с.; 1-С, (4-CH_{3}C_{6}H_{4})_{3}Sn), 137,4 (п.т.,
3 J_{Sn,C} = 40,7 Гц; 3-С, (4-CH_{3}C_{6}H_{4})_{3}Sn), 137,5 (с.; 1-С, CH_{2}C_{6}H_{5}), 139,5 (п.т.,
4 J_{Sn,C} = 12,1 Гц; 4-С, (4-CH_{3}C_{6}H_{4})_{3}Sn), 266,3 (с.; CS_{2}); ^{119}Sn{[1H] ЯМР (толуен-d₈,
25 °C, δ, м.ч.):} –181,3. ІЧ спектр (ν, см⁻¹): 1040,1 (C=S). МСВР (CI, CH_{4}, m/z [M+H⁻]): знайдено — 559,0730, розраховано для C_{29}H_{29}S_{2}Sn — 559,0727.

(1-Фенілтетіл)три-п-толістананкарбодитіоат 2.7 h

Вихід 1,25 г (44 %). Фіолетові кристили. ^{1}H ЯМР (толуен-d₈, 25 °C, δ, м.ч.):
1,47 (д., 3 J_{H,H} = 7,1 Гц, 3H; CH(CH_{3})C_{6}H_{5}), 2,08 (с., 9H; CH_{3}C_{6}H_{4}), 5,86 (м.,
3J_{Н,Н} = 7,1 Гц, 4J_{Сн,Н} = 7,0 Гц, 1H; \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 6,91–6,98 (м., 5Н; \(\text{CH}_2\text{C}_6\text{H}_5\text{)}),
7,01 (д., 3J_{Н,Н} = 7,4 Гц, 6Н; 3-H, (4-CH_3C_6H_4)_3Sn), 7,67 (м., 3J_{Сн,Н} = 51,0 Гц, 3J_{Н,Н} = 7,9 Гц, 6Н; 2-H, (4-CH_3C_6H_4)_3Sn); \(^{13}\text{C}\{^1\text{H}\} \) ЯМР (толуен-д8, 25 °C, δ, м.ч.): 20,1 (с.; \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 21,4 (п.т., 5J_{Сн,Сн} = 6,0 Гц; \(\text{CH}_2\text{C}_6\text{H}_4\text{)}, 46,3 (п.т., 3J_{Сн,Сн} = 13,2 Гц; \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 127,5 (с.; 4-С, \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 128,1 (с.; 2-С, \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 128,8 (с.; 3-С, \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 130,0 (п.т., 2J_{Сн,Сн} = 56,1 Гц; 2-С, (4-CH_3C_6H_4)_3Sn), 134,5 (с.; 1-С, (4-CH_3C_6H_4)_3Sn), 137,4 (п.т., 3J_{Сн,Сн} = 40,3 Гц; 3-С, (4-CH_3C_6H_4)_3Sn), 139,4 (п.т., 4J_{Сн,Сн} = 12,3 Гц; 4-С, (4-CH_3C_6H_4)_3Sn), 141,4 (с.; 1-С, \(\text{CH(CH}_3\text{C}_6\text{H}_5\text{)} \), 265,5 (с.; \(\text{C}_2\text{S}\)), \(^{199}\text{Sn}\{^1\text{H}\} \) ЯМР (толуен-д8, 25 °C, δ, м.ч.): −182,9. ІЧ спектр (ν, см\(^{-1}\)): 1044,1 (C=S). МСВП (CI, CH_4, m/z [MH\(^+\)]): знайдено — 571,0887, розраховано для \(\text{C}_{30}\text{H}_{31}\text{S}_2\text{Sn} \) — 571,0885.

(Трифенілстаніл)трифенілстананкарбодііотат 2.7 i

Вихід 3,26 г (84 %). Рожеві кристили. \(^1\text{H} \) ЯМР (C_6D_6, 60 °C, δ, м.ч.): 7,00–7,28 (м., 18Н; 3-Н, 4-Н, (C_6H_5)_3Sn), 7,50–7,85 (м., 12Н; 2-Н, (C_6H_5)_3Sn); \(^{13}\text{C}\{^1\text{H}\} \) ЯМР (C_6D_6, 60 °C, δ, м.ч.): 129,2 (с.; 4-С, (C_6H_5)_3Sn), 129,7 (с.; 3-С, (C_6H_5)_3SnCS), 129,8 (с.; 3-С, (C_6H_5)_3SnC=S), 137,2 (п.т., 2J_{Сн,Сн} = 44,6 Гц; 2-С, (C_6H_5)_3SnC=S), 137,5 (п.т., 2J_{Сн,Сн} = 41,0 Гц; 2-С, (C_6H_5)_3SnC=S), 138,8 (с.; 1-С, (C_6H_5)_3SnS), 140,0 (с.; 1-С, (C_6H_5)_3SnC=S), 234,1 (с.; С=S); \(^{199}\text{Sn}\{^1\text{H}\} \) ЯМР (C_6D_6, 60 °C, δ, м.ч.): −177,3 (с.; (C_6H_5)_3SnC=S), −105,0 (с.; (C_6H_5)_3SnS). ІЧ спектр (ν, см\(^{-1}\)): 1038,5 (C=S). МСВП (CI, CH_4, m/z [MH\(^+\)]): знайдено — 777,9904, розраховано для \(\text{C}_{37}\text{H}_{31}\text{S}_2\text{Sn} \) — 777,9932.

(Три-n-толілстаніл)три-n-толілстананкарбодііотат 2.7 j

Вихід 3,31 г (77 %). Рожеві кристили. \(^1\text{H} \) ЯМР (C_6D_6, 25 °C, δ, м.ч.): 2,04 (п.т., 6J_{Сн,Н} = 2,1 Гц; 9Н, (4-CH_3C_6H_4)_3SnS), 2,06 (п.т., 6J_{Сн,Н} = 2,1 Гц; 9Н, (4-CH_3C_6H_4)_3SnS), 6,92–7,08 (м., 12Н; 2-Н, (4-CH_3C_6H_4)_3Sn), 7,55–7,85 (м., 12Н; 3-Н, (4-CH_3C_6H_4)_3Sn); \(^{13}\text{C}\{^1\text{H}\} \) ЯМР (C_6D_6, 25 °C, δ, м.ч.): 21,42 ((4-CH_3C_6H_4)_3SnS), 21,46 ((4-CH_3C_6H_4)_3SnC=S), 130,0 (3-С, (4-CH_3C_6H_4)_3SnS), 135,2 (4-С, (4-CH_3C_6H_4)_3SnS), 136,3 (4-С, (4-CH_3C_6H_4)_3SnC=S), 137,3 (2-С, (4-CH_3C_6H_4)_3SnS), 137,5 (2-С, (4-CH_3C_6H_4)_3SnC=S), 138,7 (1-С, (4-CH_3C_6H_4)_3SnS),
139,4 (1-С, (4-CH₃C₆H₄)₃SnC=S), 226,2 (C=S); ¹¹⁹Sn¹¹[H] ЯМР (C₆D₆, 25 ºC, δ, м.ч.): −169,2 (c., (4-CH₃C₆H₄)₃SnC=S), −96,9 (c., (4-CH₃C₆H₄)₃SnS).

ІЧ спектр (ν, см⁻¹): 1038,0 (C=S). МСВР (CI, CH₄, m/z [MH⁺]): знайдено — 863,0794, розраховано для C₄₃H₄₃S₂Sn₂ — 863,0850.

5.2.3. Спроба синтезу біс(триарилстанілкарбонотіоїл)дисульфідів

Суміш триарилстанілхлориду (2 ммоль), N,N,N’,N’-тетраметилетилендиаміну (TMEDA) (0,3 мл, 2 ммоль) та літію (28 мг, 4 ммоль) у 10 мл сухого ТГФ перемішують при 45 ºC до повної гомогенізації. Потім прикапують CS₂ (0,36 мл, 6 ммоль) при 0 ºC і реакційну суміш перемішують додаткові 30 хв при кімнатній температурі. Отриманий розчин додають до охолодженого розчину йоду (2,54 г, 1 ммоль) у 10 мл сухого ТГФ при перемішуванні. При цьому температура реакційної суміші негайно підвищується до 25–30 ºC, а колір змінюється на рожевий. Після концентрування під зниженим тиском, залишок очищують за допомогою флеш хроматографії (система пентан – етилацетат із градієнтом концентрації етилацетату від 1 % до 50 %), збираючи рожеву фракцію.

Виходи: 2.7 i (0,65 г, 84 %), 2.7 j (0,66 г, 77 %).

5.2.4. ((Три-n-толілстанілсульфаніл)(трифенілстаніл)метил)трифенілстананкарбодитіоат 2.10

Суміш трифенілстанілхлориду 2.5 a (1,16 г, 3 ммоль), TMEDA (0,5 мл, 3,33 ммоль) та літію (42 мг, 6 ммоль) у 10 мл сухого ТГФ перемішують при 45 ºC до повної гомогенізації. Потім прикапують CS₂ (0,54 мл, 9 ммоль) при 0 ºC і реакційну суміш перемішують додаткові 30 хв при кімнатній температурі. Отриманий розчин прикапують при 0 ºC та інтенсивному перемішуванні до розчину три-n-толілстанілхлориду (1,29 г, 3 ммоль) у 10 мл сухого ТГФ, і продовжують перемішування протягом ночі при кімнатній температурі. Потім розчин концентрують під зниженим тиском і очищують за допомогою флеш
хроматографии (система пентан – этилацетат из градиентом концентрации этилацетату от 1 % до 50 %), збираяяую розеву фракцию. Після концентрирования під зниженням тиском, продукт кристалізують із суміші пентану та ДХМ.

Вихід 0,95 г (52 %). Рожеві кристи.

1Н ЯМР (C6D6, 25 °C, δ, м.ч.): 7,65–7,40 (м., 6H; 2-H, (4-CH3C6H4)2Sn), 7,43–7,19 (м., 30H, (C6H5)3Sn), 7,06–6,98 (м., 6H; 3-H, (4-CH3C6H4)2Sn), 5,12 (с., 1H, CH), 2,30 (с., 9H, (4-CH3C6H4)2Sn);

119Sn{1Н} ЯМР (C6D6, 25 °C, δ, м.ч.): −192,3 (Ph3SnCS2), −133,0 (Ph3SnCH), −38,8 (p-Tol3Sn).

5.2.5. (Бензилсульфаніл)трифенілстанан 2.13

Суміш бензилмеркаптану (0,75 г, 6 ммоль), ТБАБ (1,6 г, 5 ммоль), K2CO3 (2,07 г, 15 ммоль) та трифенілстанілхлориду 2.6 а (1,93 г, 5 ммоль) у 25 мл сухого ДМФА перемішують протягом ночі при кімнатній температурі. Потім реакційну суміш виливають в 200 мл деіонізованої води, фільтрують, промивають холодним етанолом і очищають перекристалізацією з етанолу.

Вихід 2,0 г (85 %). Безбарвні кристи.

1Н ЯМР (C6D6, 25 °C, δ, м.ч.): 3,78 (т., 3JSn,H = 38,3 Гц, 2H, CH2C6H5), 7,06–7,18 (м., 14Н; 3-H, 4-H, (C6H5)2Sn та CH2C6H5), 7,46–7,68 (м., 3JSn,H = 55,1 Гц, 6H; 2-H(C6H5)3Sn); 13С{1Н} ЯМР (C6D6, 25 °C, δ, м.ч.): 31,7 (т., 2JSn,C = 15,5 Гц, CH2C6H5), 126,9 (с.; 4-C, CH2C6H5), 128,5 (с.; 2-C, CH2C6H5), 128,9 (с.; 3-C, CH2C6H5), 129,1 (т., 2JSn,C = 56,7 Гц; 2-C, (C6H5)3Sn), 129,8 (т., 4JSn,C = 12,7 Гц; 4-C, (C6H5)3Sn), 137,0 (т., 3JSn,C = 43,2 Гц; 3-C, (C6H5)3Sn), 137,8 (с.; 1-C, (C6H5)3Sn), 142,1 (с.; 1-C, CH2C6H5); 119Sn{1Н} ЯМР (C6D6, 25 °C, δ, м.ч.): −52,9.

5.2.6. Біс(трифенілстаніл)сульфід 2.14

Розчин Na2S (0,195 г, 2,5 ммоль), трифенілстанілхлориду 2.6 а (1,93 г, 5 ммоль) та ТБАБ (1,6 г, 5 ммоль) у 25 мл сухого ДМФА перемішують протягом ночі при кімнатній температурі. Потім реакційну суміш виливають в 200 мл
деіонізованої води, фільтрують, промивають холодним етанолом і очищають перекристалізацією з гексану.

Вихід 1,6 г (87 %). Безбарвні кристи. 1Н ЯМР (C$_6$D$_6$, 25 °C, δ, м.ч.): 6,98–
7,12 (м., 18H; 3-Н, 4-Н, C$_6$H$_5$), 7,39–7,60 (м., 3J$_{Sn,H}$ = 55,4 Гц, 3J$_{H,H}$ = 7,47 Гц, 4J$_{H,H}$ = 1,73 Гц, 12H; 2-Н, C$_6$H$_5$); 13C{1Н} ЯМР (C$_6$D$_6$, 25 °C, δ, м.ч.): 128,8 (т., 2J$_{Sn,C}$ = 57,3 Гц; 2-С, C$_6$H$_5$), 129,5 (т., 4J$_{Sn,C}$ = 12,5 Гц; 4-С, C$_6$H$_5$), 136,9 (т., 3J$_{Sn,C}$ = 44,2 Гц; 3-С, C$_6$H$_5$), 139,5 (с.; 1-С, C$_6$H$_5$); 119Sn{1Н} ЯМР (C$_6$D$_6$, 25 °C, δ, м.ч.): –51,9.

5.2.7. 3-(4-Аміноfenіл)-7-(діетиламіно)-2H-хромен-2-он 4.5

Розчин 4-нітроfenілацетонітрилу 4.1 (8,4 г, 51,75 ммоль), 4-(діетиламіно)-саліцилового альдегіду 4.2 (10 г, 51,75 ммоль) та піперидину (0,1 мл, 1 ммоль) у 150 мл етанолу перемішують при кімнатній температурі протягом 24 год. Отриману фіолетово-червону суспензію концентрують під низьким тиском до об’єму близько 50 мл, додають 100 мл концентрованої соляної кислоти та кип’ятить реакційну суміш зі зворотнім холодильником протягом 15 хв, що супроводжується зміною кольору на оранжевий. Після охолодження до кімнатної температури, до розчину додають SnCl$_2$·2H$_2$O (50 г, 220 ммоль), кип’ятить зі зворотнім холодильником протягом 1 год та перемішують іще 4 год при кімнатній температурі. Отриманний розчин нейтралізують концентрованим розчином NaOH, випарюють досуха за допомогою роторного випарювача та екстрагують сухий залишок гарячим етилацетатом. Після концентрування отриманого розчину під низьким тиском, продукт кристалізують з етилацетату.

Вихід 11 г (69 %). Оранжеві кристи. 1Н ЯМР (CDCl$_3$, 25 °C, δ, м.ч.): 1,20 (т., 3J$_{H,H}$ = 7,1 Гц, 6Н; CH$_2$CH$_3$), 3,41 (к., 3J$_{H,H}$ = 7,1 Гц, 4Н; CH$_3$CH$_3$), 4,04–3,40 (рощ., 2Н; NH$_2$), 6,52 (д., 4J$_{H,H}$ = 2,4 Гц, 1Н; 8-Н, кумарин), 6,57 (д.д., 3J$_{H,H}$ = 8,8 Гц, 4J$_{H,H}$ = 2,5 Гц, 1Н; 6-Н, кумарин), 6,72 (д.д., 3J$_{H,H}$ = 8,7 Гц, 2Н; 3-Н, C$_6$H$_5$NH$_2$), 7,27 (д.д., 3J$_{H,H}$ = 8,6 Гц, 1Н; 5-Н, кумарин), 7,52 (д.д., 3J$_{H,H}$ = 8,7 Гц, 2Н; 2-Н, C$_4$H$_5$NH$_2$), 7,59 (с., 1Н; 4-Н, кумарин); 13C{1Н} ЯМР (CDCl$_3$, 25 °C, δ, м.ч.):
12,6 (CH₂CH₃), 44,9 (CH₂CH₃), 97,2 (8-С, кумарин), 108,9 (6-С, кумарин), 109,5 (4'-С, кумарин), 114,9 (3-С, C₄H₆NH₂), 121,2 (1-С, C₄H₆NH₂), 126,0 (3-С, кумарин), 128,6 (5-С, кумарин), 129,4 (1-С, C₄H₆NH₂), 138,7 (4-С, кумарин), 146,3 (4-С, C₄H₆NH₂), 150,1 (7-С, кумарин), 155,9 (8'-С, кумарин), 162,1 (2-С, кумарин). ІЧ спектр (ν, см⁻¹): 3352,8 (NH₂ асим.), 3444,1 (NH₂ сим.), 1688,4 (C=O). МСВР (ESI, 30 B, m/z [MH⁺]): знайдено — 309,1607, розраховано для C₁₉H₂₁N₂O₂ — 309,1603.

5.2.8. 2-Бromo-N-(4-(7-(діетиламіно)-2-оксо-2H-хромен-3-іл)феніл)пропанамід 4.6

До розчину 3-(4-амінофеніл)-7-(діетиламіно)-2H-хромен-2-ону 4.5 (7,71 г, 25 ммоль) та триетиламіну (4,15 мл, 30 ммоль) у 100 мл абсолютного ТГФ при 0 °C та інтенсивному перемішуванні прикапують 2-бромопропіонілбромід (3,15 мл, 30 ммоль) і перемішують отриману суміш протягом 3 год при кімнатній температурі. Отриману суспензію випаровують досуха за допомогою роторного випарювача та розтирають залишок із 200 мл деіонізованої води. Осад відфільтровують, промивають водним етанолом та перекристалізовують із етанолу.

Вихід 9,6 г (86 %). Оранжеві кристили. ¹H ЯМР (ДМСО-d₆, 25 °C, δ, м.ч.): 1,13 (t, 3J_H,H = 7,0 Гц, 6Н; CH₂CH₃), 1,77 (d, 3J_H,H = 6,7 Гц, 3Н; CH₃CHBr), 3,44 (к., 3J_H,H = 7,0 Гц, 4Н; CH₂CH₃), 4,73 (к., 3J_H,H = 6,6 Гц, 1Н; CH₃CHBr), 6,55 (d, 3J_H,H = 2,2 Гц, 1Н; 8-H, кумарин), 6,72 (d, 3J_H,H = 8,9 Гц, 4J_H,H = 2,4 Гц, 1Н; 6-H, кумарин), 7,50 (d, 3J_H,H = 8,9 Гц, 1Н; 5-H, кумарин), 7,65 (d, 3J_H,H = 9,0 Гц, 2Н; 3-H, C₆H₄NH), 7,70 (d, 3J_H,H = 9,0 Гц, 2Н; 2-H, C₆H₄NH), 8,05 (с, 1Н; 4-H, кумарин), 10,42 (с, 1Н; NH); ¹³C{¹H} ЯМР (ДМСО-d₆, 25 °C, δ, м.ч.): 12,3 (CH₂CH₃), 21,4 (CH₃CHBr), 44,1 (CH₂CH₃), 44,5 (CH₃CHBr), 96,1 (8-С, кумарин), 108,5 (4'-С, кумарин), 109,1 (6-С, кумарин), 118,3 (3-С, кумарин), 118,9 (3-С, C₄H₆NH), 128,4 (2-С, C₄H₆NH), 129,5 (5-С, кумарин), 130,9 (1-С, C₄H₆NH), 137,9 (4-С, C₄H₆NH), 140,4 (4-С, кумарин), 150,3 (7-С, кумарин),

5.2.9. (1-((4-(7-(Діетиламіно)-2-оксо-2H-хромен-3-іл)феніл)аміно)-1-оксопропан-2-іл)-O-етилкарбонодитіоат 4.7

Суспензію O-етилксантогенату калію (2,4 г, 15 ммоль) та 2-бromo-N-(4-(7-(діетиламіно)-кумарин-3-іл)феніл)пропанаміду 4.6 (4,44 г, 10 ммоль) у50 мл абсолютного етилацетату переміщують при кімнатній температурі протягом доби. Потім реакційну суміш розбавляють 50 мл ДХМ, відфільтровують через целіт і концентрують за допомогою роторного випарювача. Отриманий залишок очищають за допомогою флеш хроматографії (система ДХМ – метанол 8:2) та кристалізують із суміші етанол – етилацетат.

Вихід 3,4 г (70 %). Оранжеві кришали. ¹H ЯМР (CDCl₃, 25 °С, δ, м.ч.): 1,22 (т., 3J₉,Н = 7,1 Гц, 6Н; NCH₂CH₃), 1,43 (т., 3J₉,Н = 7,1 Гц, 3Н; OCH₂CH₃), 1,64 (д., 3J₉,Н = 7,4 Гц, 3Н; CH₃CHBr), 3,42 (к., 3J₉,Н = 7,1 Гц, 4Н; NCH₂CH₃), 4,49 (к., 3J₉,Н = 6,6 Гц, 1Н; CH₃CHBr), 4,68 (к., 3J₉,Н = 7,1 Гц, 3Н; OCH₂CH₃), 6,52 (д., 3J₉,Н = 2,4 Гц, 1Н; 8-Н, кумарин), 6,59 (д., 3J₉,Н = 8,8 Гц, 4J₉,Н = 2,5 Гц, 1Н; 6-Н, кумарин), 7,31 (д., 3J₉,Н = 8,8 Гц, 1Н; 5-Н, кумарин), 7,56 (д., 3J₉,Н = 8,8 Гц, 2Н; 3-Н, C₆H₅NH), 7,67 (с., 1Н; 4-Н, кумарин), 7,68 (д., 3J₉,Н = 8,8 Гц, 2Н; 2-Н, C₆H₅NH), 8,42 (с., 1Н; NH); ¹³C{¹H} ЯМР (CDCl₃, 25 °С, δ, м.ч.): 12,6 (NCH₂CH₃), 13,9 (OCH₂CH₃), 16,2 (CH₃CHBr), 45,0 (NCH₂CH₃), 48,5 (CH₂CHBr), 71,4 (OCH₂CH₃), 97,2 (8-С, кумарин), 109,1 (6-С, кумарин), 109,3 (4’-С, кумарин), 119,7 (3-С, C₄H₆NH), 120,2 (3-С, кумарин), 128,96 (2-С, C₄H₆NH), 129,03 (5-С, кумарин), 132,1 (1-С, C₄H₆NH₂), 137,3 (4-С, C₄H₆NH), 140,2 (4-С, кумарин), 150,6 (7-С, кумарин), 156,3 (8’-С, кумарин), 161,8 (2-С, кумарин), 169,2 (CH₃CHBrCO), 214,5 (C=S). ІЧ спектр (ν, см⁻¹): 3327,7 (NH), 1685,4 (C=O, кумарин), 1612,9 (C=O, амід), 1043,9 (C=S). MCBP (ESI, 30 В, m/z [MH⁺]): знайдено — 485,1568, розраховано для C₅H₂₉N₂O₄S₂ — 485,1569.
5.2.10. (1-((4-(7-(Діетиламіно)-2-оксо-2H-хромен-3-іл)fenіл)аміно)-1-оксопропан-2-іл)(di(піперидин-1-іл)fosфорил)метандііотат 4.8

Розчин n-бутиллітію (4,7 мл, 7,5 ммоль) прикапують до розчину ді(піперидин-1-іл)фосфіноксиду 2.1f (1,62 г, 7,5 ммоль) у 50 мл абсолютного ТГФ при −40 °С, дозволяють температурі піднятися до 0 °С і отриманий жовтий розчин перемішують протягом іще 1 год. Потім при 0 °С прикапують CS₂ (3 мл, 50 ммоль) і продовжують перемішування при кімнатній температурі протягом 30 хв. Отриманий червоно-коричневий розчин прикапують при 10–15 °С і інтенсивному перемішуванні до 2-бromo-N-(4-(7-(діетиламіно)-2-оксо-2H-хромен-3-іл)феніл)пропанаміду 4.6 (2,22 г, 5 ммоль) і продовжують перемішування протягом 14 год. Отриманий коричневий розчин концентрують під низьким тиском і залишок очищають за допомогою флеч хроматографії (система ДХМ – метанол 1:4), збираючи червону фракцію. Після уварювання, продукт кристалізують із суміші гептан – етилацетат.

Вихід 1,6 г (50 %). Червоні кристили. ¹H ЯМР (DМСО-d₆, 25 °C, δ, м.ч.): 1,21 (т., ³J_H,H = 7,1 Гц, 6H; CH₂CH₃), 1,41–1,64 (м., 12Н; 3-H, 4-H, C₅H₁₀N), 1,68 (д.д., ³J_H,H = 7,2 Гц, 5J_P,H = 0,8 Гц, 3Н; CH₃CHS), 2,98–3,14 (м., 8Н; 2-H, C₅H₁₀N), 3,42 (к., ³J_H,H = 7,1 Гц, 4Н; CH₂CH₃), 4,79 (к.д., ³J_H,H = 6,9 Гц, ⁴J_P,H = 0,9 Гц, 1Н; CH₃CHS), 6,51 (д., ³J_H,H = 2,3 Гц, 1Н; 8-H, кумарин), 6,58 (д.д., ³J_H,H = 8,8 Гц, ⁴J_H,H = 2,5 Гц, 1Н; 6-H, кумарин), 7,50 (д., ³J_H,H = 8,9 Гц, 1Н; 5-H, кумарин), 7,50 (д., ³J_H,H = 8,8 Гц, 2Н; 3-H, C₆H₄NH), 7,65 (д., ³J_H,H = 8,8 Гц, 2Н; 2-H, C₆H₄NH), 7,66 (с., 1Н; 4-H, кумарин), 8,42 (с., 1Н; NH); ¹³C{¹H} ЯМР (DМСО-d₆, 25 °C, δ, м.ч.): 12,6 (с.; CH₂CH₃), 15,4 (с.; CH₃CHS), 24,5 (д., ⁴J_P,C = 4,4 Гц; 4-C, C₅H₁₀N), 25,9 (п.т., ³J_P,C = 5,1 Гц; 3-C, C₅H₁₀N), 45,0 (с.; CH₂CH₃), 45,8 (с.; 2-C, C₅H₁₀N), 47,6 (с.; CH₃CHS), 97,2 (с.; 8-C, кумарин), 109,1 (с.; 6-C, кумарин), 109,2 (с.; 4'-C, кумарин), 119,7 (с.; 3-C, C₄H₆NH), 120,1 (с.; 3-C, кумарин), 128,95 (с.; 2-C, C₄H₆NH), 129,04 (с.; 5-C, кумарин), 132,1 (с.; 1-C, C₄H₆NH₂), 137,2 (с.; 4-C, C₄H₆NH), 140,2 (с.; 4-C, кумарин), 150,6 (с.; 7-C, кумарин), 156,3 (с.; 8'-C, кумарин), 161,8 (с.; 2-C, кумарин),
167,9 (с.; CH(CH₃)CO), 234,5 (л., ¹J_P,C = 232,7 Гц; Cₛ₂); ³¹P[¹H] ЯМР (CDCl₃, 25 °C, δ, м.ч.): 14,8. ІЧ спектр (ν, см⁻¹): 3246,0 (N-H), 1712,0 (C=O, амід), 1678,3 (C=O, кумарин), 1211,9 (P=O), 1066,5 (C=S). МСВП (ESI, 30 В, m/z [MH⁺]): знайдено — 655,2534, розраховано для C₃₃H₄₄N₄O₄S₂P — 655,2542.

5.2.11. 7-(Діетиламіно)-2-етокси-3-(4-нітроfenіл)-2H-бензо[e][1,2]окса-фосфінін-2-оксид 4.11

Розчин 4-(діетиламіно)саліцилолового альдегіду 4.2 (0,97 г, 5 ммоль), діетил(4-нітроbenзил)fosfonatu 4.9 (1,37 г, 5 ммоль) та піперидину (0,01 мл, 0,1 ммоль) у 25 мл толуену перемішують протягом 14 год при кімнатній температурі, а потім кип’ятять із насадкою Діна-Старка протягом 6 год. Після випарювання розчинника за допомогою роторного випарювача, сухий залишок очищують за допомогою флеш хроматографії (система пентан − етилацетат 7:3) та кристалізують із етилацетату.

Вихід 1,4 г (70%). Фіолетові кристи. ¹H ЯМР (CDCl₃, 25 °C, δ, м.ч.): 1,20 (т., ³J_H,H = 7,1 Гц, 6H; CH₃CH₂N), 1,26 (т.д., ³J_H,H = 7,1 Гц, 4J_P,H = 0,4 Гц, 3H; CH₃CH₂O), 3,40 (к., ³J_H,H = 7,5 Гц, 4H; CH₃CH₂N), 4,12 (к.д., ³J_P,H = 8,7 Гц, ³J_H,H = 7,1 Гц, 1H; CH₃CH₂O), 6,36 (д., 4J_H,H = 2,5 Гц, 1H; 8-H), 6,44 (д.д., ³J_H,H = 8,8 Гц, ³J_H,H = 2,5 Гц, 1H; 6-H), 7,18 (д., ³J_H,H = 8,8 Гц, 1H; 5-H), 7,53 (д., ³J_P,H = 38,9 Гц, 1H; 4-H), 7,83–7,89 (м., 2H, 2-H, 4-NO₂C₆H₄), 8,16–8,22 (м., 2H, 3-H, 4-NO₂C₆H₄); ¹³C[¹H] ЯМР (CDCl₃, 25 °C, δ, м.ч.): 12,6 (с.; CH₃CH₂N), 16,4 (д., ³J_P,C = 6,3 Гц; CH₃CH₂O), 44,9 (с.; CH₂CH₂N), 63,3 (д., ²J_P,C = 6,9 Гц; CH₃CH₂O), 99,9 (д., ³J_P,C = 7,7 Гц, 8-С), 107,8 (с.; 6-С), 109,5 (д., ³J_P,C = 16,3 Гц; 4'-С), 116,1 (д., ³J_P,C = 172,9 Гц; 3-С), 124,2 (с.; 2-С, C₆H₄NO₂), 127,1 (д., ³J_P,C = 7,3 Гц; 3-С, C₆H₄NO₂), 132,1 (д., ³J_P,C = 1,4 Гц; 5-С), 142,1 (д., ²J_P,C = 5,5 Гц; 4-С), 142,5 (д., ²J_P,C = 11,4 Гц; 1-С, C₆H₄NO₂), 146,7 (с.; 3-NO₂), 150,9 (д., ³J_P,C = 1,9 Гц; 7-С), 153,7 (д., ²J_P,C = 8,6 Гц; 8'-С); ³¹P ЯМР (CDCl₃, 25 °C, δ, м.ч.): 9,5 (д.т.,
3$J_{Н,Р}$ = 38,9 Гц, 3$J_{Н,Р}$ = 9,0 Гц). МСВР (ESI, 30 В, m/z [MH$^+$]): знайдено — 403,1423, розраховано для C$_{20}$H$_{24}$N$_2$O$_5$P — 403,1423.

5.2.12. 3-(4-Амінофеніл)-7-(діетиламіно)-2-етокси-2H-бензо[e][1,2]оксафосфін-2-оксид 4.12

До розчину 7-(діетиламіно)-3-(4-нітрофеніл)-2-етокси-2H-бензо[e][1,2]оксафосфін-2-оксиду 4.11 (0,40 г, 1 ммоль) у 20 мл етанолу додають SnCl$_2$$\cdot$2H$_2$O (0,97 г, 4,25 ммоль), кип’ятять протягом 1 год і перемішують іще 14 год при кімнатній температурі. Отриманий розчин нейтралізують концентрованим розчином NaOH, екстрагують етилацетатом і очищають продукт за допомогою флеч хроматографії (система ДХМ — метанол 8:2).

Вихід 0,26 г (70 %). Оранжевий аморфний порошок. 1Н ЯМР (CDCl$_3$, 25 °C, δ, м.ч.): 1,19 (т., $^3J_{Н,Н} = 7,1$ Гц, 6Н; CH$_3$CH$_2$N), 1,24 (т., $^3J_{Н,Н} = 7,1$ Гц, 3Н; CH$_3$CH$_2$O), 3,39 (к., $^3J_{Н,Н} = 7,2$ Гц, 4Н; CH$_3$CH$_2$N), 4,08 (к.д., $^3J_{Р,Н} = 8,8$ Гц, $^3J_{Н,Н} = 7,1$ Гц, 2Н; CH$_3$CH$_2$O), 4,31–4,59 (рощ., 2Н; NH$_2$), 6,41 (д., $^4J_{Н,Н} = 2,4$ Гц, 1Н; 8-Н), 6,47 (д.д., $^3J_{Н,Н} = 8,6$ Гц, $^4J_{Н,Н} = 2,4$ Гц, 1Н; 6-Н), 6,77 (д., $^3J_{Н,Н} = 8,0$ Гц, 2Н; 3-Н, 4-NH$_2$C$_6$H$_4$), 7,15 (д., $^3J_{Н,Н} = 8,7$ Гц, 1Н; 5-Н), 7,29 (д., $^3J_{Р,Н} = 40,8$ Гц, 1Н; 4-Н), 7,48 (д.д., $^3J_{Н,Н} = 8,6$ Гц, $^4J_{Р,Н} = 1,3$ Гц, 2Н; 2-Н, 4-NH$_2$C$_6$H$_4$); 13C {1Н} ЯМР (CDCl$_3$, 25 °C, δ, м.ч.): 12,4 (с.; CH$_3$CH$_2$N), 16,1 (д., $^3J_{Р,С} = 6,6$ Гц; CH$_3$CH$_2$O), 44,6 (с.; CH$_3$CH$_2$N), 63,1 (д., $^2J_{Р,С} = 6,8$ Гц; CH$_3$CH$_2$O), 99,7 (д., $^3J_{Р,С} = 7,6$ Гц; 8-С), 107,5 (с.; 6-С), 109,9 (д., $^3J_{Р,С} = 16,8$ Гц; 4’-С), 116,1 (с.; 3-С, C$_6$H$_4$NH$_2$), 118,0 (д., $^1J_{Р,С} = 166,9$ Гц; 3-С), 127,5 (д., $^3J_{Р,С} = 7,5$ Гц; 2-С, C$_6$H$_4$NH$_2$), 125,8 (д., $^2J_{Р,С} = 11,1$ Гц; 1-С, C$_6$H$_4$NO$_2$), 130,9 (с.; 5-С), 137,2 (д., $^2J_{Р,С} = 6,3$ Гц; 4-С), 145,0 (с.; C$_2$NH$_2$), 149,3 (д., $^4J_{Р,С} = 1,6$ Гц; 7-С), 152,6 (д., $^2J_{Р,С} = 8,4$ Гц; 8’-С); 31P ЯМР (CDCl$_3$, 25 °C, δ, м.ч.): 11,1 (д.т., $^3J_{Н,Р} = 40,7$ Гц, $^3J_{Н,Р} = 8,7$ Гц). МСВР (ESI, 30 В, m/z [MH$^+$]): знайдено — 373,1678, розраховано для C$_{20}$H$_{26}$N$_2$O$_3$P — 373,1681.
ВІСНОВКИ

1. Синтезовано 13 нових фосфорорганічних та стануморганічних RAFT агентів, причому клас триарилстананкарбодитіоатів у ролі агентів передачі ланцюга для RAFT полімеризації запропоновано вперше. Метод їх синтезу вдосконалено відновленням триарилстанілхлоридів нафталенідом натрію.

2. Знайдено нові приклади S_N заміщення в стануморганічних сполуках, а саме: фрагментация bis(триарилстанілтіокарбоніл)дисульфідів та димеризація (три-n-толілстаніл)трифенілстананкарбодитіоату, які поповнили масив знань про механізм внутрішньомолекулярного нуклеофільного заміщення.

3. Запропонована методологія ефективного дослідження реакцій термічної деструкції та полімеризації шляхом проведення їх безпосередньо в ЯМР ампулах із реєстрацією спектрів на ядрах 1H, 19F, 31P та 119Sn in situ, що дозволяє підвищити точність кільцісного аналізу та уникнути побічних процесів і втрат летких речовин, а також скорочує затрати часу та матеріальних ресурсів.

4. З використанням цієї методології досліджено співвідношення структура–термічна стабільність для триарилстананкарбодитіоатів. Наприклад, введення електронодонорних толільних груп підвищує стабільність на 30–40 %. Водночас визначено кінетичні параметри, структури основних продуктів та запропоновано імовірний механізм реакцій термічного розкладу.

5. Підтверджено ефективність синтезованих RAFT агентів у модельних радикальних полімеризаціях, а два із них продемонстрували значно вищий рівень контролю над молярною масою та дисперсністю, у порівнянні з існуючими аналогами, що дозволяє запропонувати їх для подальшого впровадження. Висунуто критерії використання гетероядерного ЯМР для моніторингу процесу полімеризації.

6. Синтезовано оригінальний фосфорорганічний RAFT агент із кумариновим флуорофором та показано його ефективність у радикальній полімеризації. Для синтезованих полімерів встановлено лінійну кореляцію між інтенсивністю флуоресценції та ступенем полімеризації.

16. D’Agosto F. Molecular Weight and Functional End Group Control by RAFT Polymerization of a Bisubstituted Acrylamide Derivative / Franck D’Agosto,

47. Pat. 3636089 United States Patent. Int. Cl. C07C 327/00. Production of aromatic dithiocarboxylic acids / Helmuth Hagen, Friedrich Becke; BASF Aktiengesellschaft – № 1274121; filed 03.06.1968; patented 18.01.1972.

50. Hu D. Reaction-induced microphase separation in polybenzoxazine thermosets containing poly(N-vinyl pyrrolidone)-block-polystyrene diblock copolymer / Di

128. Kunze U. Nucleophile Addition von Triorganozinn-Anionen an Kohlenstoffdisulfid. IV. Darstellung und Komplexbildung von 1,n-

152. Lockhart T. P. Metal-metal spin coupling through chalcogenides. Correlation of $^{2}J(119Sn, 119Sn)$ with molecular structure. Crystal structure of [(2-
Doi: 10.1016/0022-328X(89)87316-4.

Doi: 10.3390/polym7101490.

Doi: 10.1002/9783527622757.

Doi: 10.1016/j.progpolymsci.2010.06.004.

Doi: 10.1021/ja5099676.

Doi: 10.1002/jhet.5570240408.

167. SADABS, Програма для збору даних, Bruker – AXS.

ПЕРЕЛІК ДОДАТКІВ

Додаток 1. ¹H ЯМР спектр сполуки 2.4 а ... 188
Додаток 2. ³¹P{¹H} ЯМР спектр сполуки 2.4 а .. 188
Додаток 3. ¹H ЯМР спектр сполуки 2.4 б ... 189
Додаток 4. ¹³C{¹H} ЯМР спектр сполуки 2.4 б ... 189
Додаток 5. ³¹P{¹H} ЯМР спектр сполуки 2.4 б ... 190
Додаток 6. ¹H ЯМР спектр сполуки 2.4 с ... 190
Додаток 7. ¹³C{¹H} ЯМР спектр сполуки 2.4 с ... 191
Додаток 8. ³¹P{¹H} ЯМР спектр сполуки 2.4 с ... 191
Додаток 9. ¹H ЯМР спектр сполуки 2.4 д ... 192
Додаток 10. ¹³C{¹H} ЯМР спектр сполуки 2.4 д ... 192
Додаток 11. ³¹P{¹H} ЯМР спектр сполуки 2.4 д ... 193
Додаток 12. ¹H ЯМР спектр сполуки 2.4 е ... 193
Додаток 13. ¹³C{¹H} ЯМР спектр сполуки 2.4 е ... 194
Додаток 14. ³¹P{¹H} ЯМР спектр сполуки 2.4 е ... 194
Додаток 15. ¹H ЯМР спектр сполуки 2.4 ф ... 195
Додаток 16. ¹³C{¹H} ЯМР спектр сполуки 2.4 ф ... 195
Додаток 17. ³¹P{¹H} ЯМР спектр сполуки 2.4 ф ... 196
Додаток 18. Результати РСД сполуки 2.4 б ... 196
Додаток 19. Значення довжин зв’язків у структурі сполуки 2.4 б 197
Додаток 20. Значення кутів між зв’язками в структурі сполуки 2.4 б 198
Додаток 21. Результати РСД сполуки 2.4 б ... 201
Додаток 22. Значення довжин зв’язків у структурі сполуки 2.4 б 202
Додаток 23. Значення кутів між зв’язками в структурі сполуки 2.4 б 202
Додаток 24. ¹H ЯМР спектр сполуки 2.7 а ... 205
Додаток 25. ¹³C{¹H} ЯМР спектр сполуки 2.7 а ... 205
Додаток 26. ¹¹⁹Sn{¹H} ЯМР спектр сполуки 2.7 а .. 206
Додаток 27. ¹H ЯМР спектр сполуки 2.7 б ... 206
Додаток 28. ¹³C{¹H} ЯМР спектр сполуки 2.7 б ... 207
Додаток 29. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 b .. 207
Додаток 30. 1H ЯМР спектр сполуки 2.7 c .. 208
Додаток 31. 13C\{^1H\} ЯМР спектр сполуки 2.7 c .. 208
Додаток 32. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 c .. 209
Додаток 33. 1H ЯМР спектр сполуки 2.7 d .. 209
Додаток 34. 13C\{^1H\} ЯМР спектр сполуки 2.7 d .. 210
Додаток 35. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 d .. 210
Додаток 36. 19F\{^1H\} ЯМР спектр сполуки 2.7 d .. 211
Додаток 37. 1H ЯМР спектр сполуки 2.7 e .. 211
Додаток 38. 13C\{^1H\} ЯМР спектр сполуки 2.7 e .. 212
Додаток 39. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 e .. 212
Додаток 40. 1H ЯМР спектр сполуки 2.7 f .. 213
Додаток 41. 13C\{^1H\} ЯМР спектр сполуки 2.7 f .. 213
Додаток 42. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 f .. 214
Додаток 43. 1H ЯМР спектр сполуки 2.7 g .. 214
Додаток 44. 13C\{^1H\} ЯМР спектр сполуки 2.7 g .. 215
Додаток 45. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 g .. 215
Додаток 46. 1H ЯМР спектр сполуки 2.7 h .. 216
Додаток 47. 13C\{^1H\} ЯМР спектр сполуки 2.7 h .. 216
Додаток 48. 119Sn\{^1H\} ЯМР спектр сполуки 2.7 h .. 217
Додаток 49. Результати РСД сполуки 2.7 b .. 217
Додаток 50. Значення довжин зв’язків у структурі сполуки 2.7 b 218
Додаток 51. Значення кутів між зв’язками в структурі сполуки 2.7 b 219
Додаток 52. Результати РСД сполуки 2.7 c .. 221
Додаток 53. Значення довжин зв’язків у структурі сполуки 2.7 c 222
Додаток 54. Значення кутів між зв’язками в структурі сполуки 2.7 c 223
Додаток 55. Результати РСД сполуки 2.7 d .. 225
Додаток 56. Значення довжин зв’язків у структурі сполуки 2.7 d 226
Додаток 57. Значення кутів між зв’язками в структурі сполуки 2.7 d 226
Додаток 58. Результати РСД сполуки 2.7 f .. 228
Додаток 59. Значення довжин зв’язків у структурі сполуки 2.7 f 229
Додаток 60. Значення кутів між зв’язками в структурі сполуки 2.7 f 230
Додаток 61. Результати РСД сполуки 2.7 g .. 232
Додаток 62. Значення довжин зв’язків у структурі сполуки 2.7 g 233
Додаток 63. Значення кутів між зв’язками в структурі сполуки 2.7 g 234
Додаток 64. Результати РСД сполуки 2.7 h .. 236
Додаток 65. Значення довжин зв’язків у структурі сполуки 2.7 h 237
Додаток 66. Значення кутів між зв’язками в структурі сполуки 2.7 h 238
Додаток 67. ¹H ЯМР спектр сполуки 2.7 i ... 240
Додаток 68. ¹³C{¹H} ЯМР спектр сполуки 2.7 i 240
Додаток 69. ¹¹⁹Sn{¹H} ЯМР спектр сполуки 2.7 i 241
Додаток 70. ¹H ЯМР спектр сполуки 2.7 j ... 241
Додаток 71. ¹³C{¹H} ЯМР спектр сполуки 2.7 j 242
Додаток 72. ¹¹⁹Sn{¹H} ЯМР спектр сполуки 2.7 j 242
Додаток 73. Результати РСД сполуки 2.7 i .. 243
Додаток 74. Значення довжин зв’язків у структурі сполуки 2.7 i 244
Додаток 75. Значення кутів між зв’язками в структурі сполуки 2.7 i 244
Додаток 76. Результати РСД сполуки 2.7 i .. 246
Додаток 77. Значення довжин зв’язків у структурі сполуки 2.7 j 247
Додаток 78. Значення кутів між зв’язками в структурі сполуки 2.7 j 247
Додаток 79. ¹H ЯМР спектр сполуки 2.10 .. 249
Додаток 80. ¹¹⁹Sn{¹H} ЯМР спектр сполуки 2.10 250
Додаток 81. Результати РСД сполуки 2.10 .. 250
Додаток 82. Значення довжин зв’язків у структурі сполуки 2.10 251
Додаток 83. Значення кутів між зв’язками в структурі сполуки 2.10 253
Додаток 84. ¹H ЯМР спектр сполуки 2.13 .. 257
Додаток 85. ¹³C{¹H} ЯМР спектр сполуки 2.13 257
Додаток 86. ¹¹⁹Sn{¹H} ЯМР спектр сполуки 2.13 258
Додаток 87. ¹H ЯМР спектр сполуки 2.14 .. 258
Додаток 88. ¹³C{¹H} ЯМР спектр сполуки 2.14 259
Додаток 89. $^{119}\text{Sn}\{^{1}\text{H}\}$ ЯМР спектр сполуки 2.14 .. 259
Додаток 90. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 а .. 260
Додаток 91. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 а ... 260
Додаток 92. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 b ... 261
Додаток 93. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 b ... 261
Додаток 94. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 c ... 262
Додаток 95. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 c ... 262
Додаток 96. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 d ... 263
Додаток 97. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 d ... 263
Додаток 98. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 e ... 264
Додаток 99. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 e ... 264
Додаток 100. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 f ... 265
Додаток 101. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 f ... 265
Додаток 102. ^{1}H ЯМР спектри реакційних сумішей отриманих у ході полімеризації BA за участю сполуки 2.4 a ... 266
Додаток 103. $^{31}\text{P}\{^{1}\text{H}\}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації BA за участю сполуки 2.4 a ... 266
Додаток 104. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 b .. 267
Додаток 105. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 c .. 267
Додаток 106. 31P{1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 c .. 268
Додаток 107. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 d .. 268
Додаток 108. 31P{1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 d .. 269
Додаток 109. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 e .. 269
Додаток 110. 31P{1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 e .. 270
Додаток 111. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 f .. 270
Додаток 112. 31P{1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 f .. 271
Додаток 113. 1H ЯМР спектри реакційних сумішей отриманих у ході кополімеризації St та ВА за участю сполуки 2.4 c .. 271
Додаток 114. 19Sn{1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.7 a .. 272
Додаток 115. 19Sn{1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації MA за участю сполуки 2.7 a .. 272
Додаток 116. 1H ЯМР спектр сполуки 4.5 .. 273
Додаток 117. 13C{1H} ЯМР спектр сполуки 4.5 .. 273
Додаток 118. 1H ЯМР спектр сполуки 4.6 .. 274
Додаток 119. 13C{1H} ЯМР спектр сполуки 4.6 .. 274
Додаток 120. 1H ЯМР спектр сполуки 4.7 .. 275
Додаток 121. 13C{1H} ЯМР спектр сполуки 4.7 .. 275
Додаток 122. 1H ЯМР спектр сполуки 4.8 ... 276
Додаток 123. 13C{1H} ЯМР спектр сполуки 4.8 ... 276
Додаток 124. 31P{1H} ЯМР спектр сполуки 4.8... 277
Додаток 125. Результати РСД сполуки 4.5 ... 277
Додаток 126. Значення довжин зв’язків у структурі сполуки 4.5 278
Додаток 127. Значення кутів між зв’язками в структурі сполуки 4.5 279
Додаток 128. Результати РСД сполуки 4.6 ... 281
Додаток 129. Значення довжин зв’язків у структурі сполуки 4.6 282
Додаток 130. Значення кутів між зв’язками в структурі сполуки 4.6 282
Додаток 131. Результати РСД сполуки 4.7 ... 284
Додаток 132. Значення довжин зв’язків у структурі сполуки 4.7 285
Додаток 133. Значення кутів між зв’язками в структурі сполуки 4.7 286
Додаток 134. Результати РСД сполуки 4.8 ... 289
Додаток 135. Значення довжин зв’язків у структурі сполуки 4.8 290
Додаток 136. Значення кутів між зв’язками в структурі сполуки 4.8 291
Додаток 137. 1H ЯМР спектр сполуки 4.11 ... 295
Додаток 138. 13C{1H} ЯМР спектр сполуки 4.11 ... 295
Додаток 139. 31P ЯМР спектр сполуки 4.11 ... 296
Додаток 140. 1H ЯМР спектр сполуки 4.12 ... 296
Додаток 141. 13C{1H} ЯМР спектр сполуки 4.12 ... 297
Додаток 142. 31P ЯМР спектр сполуки 4.12 ... 297
Додаток 143. Результати РСД сполуки 4.11 ... 298
Додаток 144. Значення довжин зв’язків у структурі сполуки 4.11 299
Додаток 145. Значення кутів між зв’язками в структурі сполуки 4.11 299
Додаток 1. 1H ЯМР спектр сполуки 2.4 а

Додаток 2. 31P$^{^1}$H ЯМР спектр сполуки 2.4 а
Додаток 3. 1H ЯМР спектр сполуки 2.4 b

Додаток 4. 13C[1H] ЯМР спектр сполуки 2.4 b
Додаток 5. $^{31}P\{^1H\}$ ЯМР спектр сполуки 2.4 b

Додаток 6. 1H ЯМР спектр сполуки 2.4 c
Додаток 7. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки 2.4 с

Додаток 8. $^{31}\text{P}\{^1\text{H}\}$ ЯМР спектр сполуки 2.4 с
Додаток 9. 1H ЯМР спектр сполуки 2.4 d

Додаток 10. 13C1H ЯМР спектр сполуки 2.4 d
Додаток 11. $^{31}\text{P}^{[1\text{H}]}$ ЯМР спектр сполуки 2.4 д

Додаток 12. ^1H ЯМР спектр сполуки 2.4 е
Додаток 13. 13C{H} ЯМР спектр сполуки 2.4 е

Додаток 14. 31P{H} ЯМР спектр сполуки 2.4 е
Додаток 15. 1H ЯМР спектр сполуки 2.4 f

Додаток 16. 13C {1H} ЯМР спектр сполуки 2.4 f
Додаток 17. 31P{¹H} ЯМР спектр сполуки 2.4 f

Додаток 18

Результати РСД сполуки 2.4 b

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker Kappa APEX II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C${21}$H${37}$N$_2$OPS$_2$</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>428,62</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo$_{K\alpha}$)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Моноклінна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>Cc</td>
</tr>
<tr>
<td>a</td>
<td>10,8007(12) Å</td>
</tr>
<tr>
<td>b</td>
<td>31,284(3) Å</td>
</tr>
<tr>
<td>c</td>
<td>7,6073(9) Å</td>
</tr>
<tr>
<td>α</td>
<td>90 °</td>
</tr>
<tr>
<td>β</td>
<td>107,924(4) °</td>
</tr>
<tr>
<td>γ</td>
<td>90 °</td>
</tr>
</tbody>
</table>
Продовження додатку 18

<table>
<thead>
<tr>
<th>Об'єм елементарної комірки, V</th>
<th>2445,7(5) Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число молекул в комірці, Z</td>
<td>4</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,164 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>0,296 мм⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>928</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,15x0,15x0,10 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Пурпурний блок</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>5,21–26,37 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-13 ≤ h ≤ 13; -38 ≤ k ≤ 38; -9 ≤ l ≤ 9</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>18261/4958</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>4958/2/253</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F²</td>
<td>1,004</td>
</tr>
<tr>
<td>Кінцеві R індекси [I>2σ(I)]</td>
<td>R = 0,0431; wR = 0,0722</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>R = 0,065; wR = 0,0797</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,193 та -0,23 еÅ⁻³</td>
</tr>
</tbody>
</table>

Додаток 19

Значення довжин зв’язків у структурі сполуки 2.4 b

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1–O1</td>
<td>1,474(2)</td>
<td>C5–C7</td>
<td>1,523(4)</td>
<td>C12–H12C</td>
<td>0,98</td>
</tr>
<tr>
<td>P1–N1</td>
<td>1,641(2)</td>
<td>C6–H6A</td>
<td>0,98</td>
<td>C13–H13A</td>
<td>0,981</td>
</tr>
<tr>
<td>P1–N2</td>
<td>1,655(2)</td>
<td>C6–H6B</td>
<td>0,981</td>
<td>C13–H13B</td>
<td>0,98</td>
</tr>
<tr>
<td>P1–C1</td>
<td>1,868(2)</td>
<td>C6–H6C</td>
<td>0,979</td>
<td>C13–H13C</td>
<td>0,98</td>
</tr>
<tr>
<td>S1–C1</td>
<td>1,720(3)</td>
<td>C7–H7A</td>
<td>0,981</td>
<td>C14–H14</td>
<td>1,001</td>
</tr>
<tr>
<td>S1–C14</td>
<td>1,835(2)</td>
<td>C7–H7B</td>
<td>0,98</td>
<td>C14–C15</td>
<td>1,534(4)</td>
</tr>
<tr>
<td>S2–C1</td>
<td>1,634(3)</td>
<td>C7–H7C</td>
<td>0,98</td>
<td>C14–C16</td>
<td>1,515(4)</td>
</tr>
<tr>
<td>N1–C2</td>
<td>1,478(4)</td>
<td>C8–H8</td>
<td>0,999</td>
<td>C15–H15A</td>
<td>0,98</td>
</tr>
<tr>
<td>N1–C5</td>
<td>1,486(4)</td>
<td>C8–C9</td>
<td>1,522(4)</td>
<td>C15–H15B</td>
<td>0,979</td>
</tr>
</tbody>
</table>
Зв’язок | Довжина, Å | Зв’язок | Довжина, Å | Зв’язок | Довжина, Å |
--- | --- | --- | --- | --- | --- |
N2–C8 | 1,497(3) | C8–C10 | 1,530(4) | C15–H15C | 0,98 |
N2–C11 | 1,482(4) | C9–H9A | 0,979 | C16–C17 | 1,392(5) |
C2–H2 | 1 | C9–H9B | 0,98 | C16–C21 | 1,382(4) |
C2–C3 | 1,523(6) | C9–H9C | 0,981 | C17–H17 | 0,951 |
C2–C4 | 1,523(4) | C10–H10A | 0,98 | C17–C18 | 1,376(5) |
C3–H3A | 0,98 | C10–H10B | 0,98 | C18–H18 | 0,95 |
C3–H3B | 0,98 | C10–H10C | 0,98 | C18–C19 | 1,366(6) |
C3–H3C | 0,98 | C11–H11 | 1 | C19–H19 | 0,949 |
C4–H4A | 0,98 | C11–C12 | 1,536(4) | C19–C20 | 1,386(6) |
C4–H4B | 0,981 | C11–C13 | 1,518(4) | C20–H20 | 0,949 |
C4–H4C | 0,981 | C12–H12A | 0,98 | C20–C21 | 1,391(5) |
C5–H5 | 1,001 | C12–H12B | 0,981 | C21–H21 | 0,951 |
C5–C6 | 1,519(4) |

Додаток 20

Значення кутів між зв’язками в структурі сполуки 2.4 b

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1–P1–N1</td>
<td>111,9(1)</td>
<td>C8–C9–H9B</td>
<td>109,5</td>
</tr>
<tr>
<td>O1–P1–N2</td>
<td>113,3(1)</td>
<td>C8–C9–H9C</td>
<td>109,4</td>
</tr>
<tr>
<td>O1–P1–C1</td>
<td>106,8(1)</td>
<td>H9A–C9–H9B</td>
<td>109,5</td>
</tr>
<tr>
<td>N1–P1–N2</td>
<td>111,6(1)</td>
<td>H9A–C9–H9C</td>
<td>109,5</td>
</tr>
<tr>
<td>N1–P1–C1</td>
<td>109,6(1)</td>
<td>H9B–C9–H9C</td>
<td>109,4</td>
</tr>
<tr>
<td>N2–P1–C1</td>
<td>103,1(1)</td>
<td>C8–C10–H10A</td>
<td>109,5</td>
</tr>
<tr>
<td>C1–S1–C14</td>
<td>105,0(1)</td>
<td>C8–C10–H10B</td>
<td>109,4</td>
</tr>
<tr>
<td>P1–N1–C2</td>
<td>120,6(2)</td>
<td>C8–C10–H10C</td>
<td>109,5</td>
</tr>
<tr>
<td>P1–N1–C5</td>
<td>123,5(2)</td>
<td>H10A–C10–H10B</td>
<td>109,4</td>
</tr>
<tr>
<td>C2–N1–C5</td>
<td>115,9(2)</td>
<td>H10A–C10–H10C</td>
<td>109,5</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>P1–N2–C8</td>
<td>119,0(2)</td>
<td>H10B–C10–H10C</td>
<td>109,5</td>
</tr>
<tr>
<td>P1–N2–C11</td>
<td>125,1(2)</td>
<td>N2–C11–H11</td>
<td>107,1</td>
</tr>
<tr>
<td>C8–N2–C11</td>
<td>115,6(2)</td>
<td>N2–C11–C12</td>
<td>112,1(2)</td>
</tr>
<tr>
<td>P1–C1–S1</td>
<td>108,5(1)</td>
<td>N2–C11–C13</td>
<td>111,7(2)</td>
</tr>
<tr>
<td>P1–C1–S2</td>
<td>125,0(1)</td>
<td>H11–C11–C12</td>
<td>107,1</td>
</tr>
<tr>
<td>S1–C1–S2</td>
<td>126,5(2)</td>
<td>H11–C11–C13</td>
<td>107,1</td>
</tr>
<tr>
<td>N1–C2–H2</td>
<td>106,2</td>
<td>C12–C11–C13</td>
<td>111,5(2)</td>
</tr>
<tr>
<td>N1–C2–C3</td>
<td>112,8(3)</td>
<td>C11–C12–H12A</td>
<td>109,5</td>
</tr>
<tr>
<td>N1–C2–C4</td>
<td>112,0(3)</td>
<td>C11–C12–H12B</td>
<td>109,4</td>
</tr>
<tr>
<td>H2–C2–C3</td>
<td>106,2</td>
<td>C11–C12–H12C</td>
<td>109,5</td>
</tr>
<tr>
<td>H2–C2–C4</td>
<td>106,2</td>
<td>H12A–C12–H12B</td>
<td>109,5</td>
</tr>
<tr>
<td>C3–C2–C4</td>
<td>112,7(3)</td>
<td>H12A–C12–H12C</td>
<td>109,5</td>
</tr>
<tr>
<td>C2–C3–H3A</td>
<td>109,5</td>
<td>H12B–C12–H12C</td>
<td>109,4</td>
</tr>
<tr>
<td>C2–C3–H3B</td>
<td>109,5</td>
<td>C11–C13–H13A</td>
<td>109,5</td>
</tr>
<tr>
<td>C2–C3–H3C</td>
<td>109,5</td>
<td>C11–C13–H13B</td>
<td>109,5</td>
</tr>
<tr>
<td>H3A–C3–H3B</td>
<td>109,4</td>
<td>C11–C13–H13C</td>
<td>109,4</td>
</tr>
<tr>
<td>H3A–C3–H3C</td>
<td>109,4</td>
<td>H13A–C13–H13B</td>
<td>109,4</td>
</tr>
<tr>
<td>H3B–C3–H3C</td>
<td>109,4</td>
<td>H13A–C13–H13C</td>
<td>109,5</td>
</tr>
<tr>
<td>C2–C4–H4A</td>
<td>109,5</td>
<td>H13B–C13–H13C</td>
<td>109,4</td>
</tr>
<tr>
<td>C2–C4–H4B</td>
<td>109,5</td>
<td>S1–C14–H14</td>
<td>108,8</td>
</tr>
<tr>
<td>C2–C4–H4C</td>
<td>109,4</td>
<td>S1–C14–C15</td>
<td>106,0(2)</td>
</tr>
<tr>
<td>H4A–C4–H4B</td>
<td>109,4</td>
<td>S1–C14–C16</td>
<td>111,5(2)</td>
</tr>
<tr>
<td>H4A–C4–H4C</td>
<td>109,6</td>
<td>H14–C14–C15</td>
<td>108,8</td>
</tr>
<tr>
<td>H4B–C4–H4C</td>
<td>109,5</td>
<td>H14–C14–C16</td>
<td>108,8</td>
</tr>
<tr>
<td>N1–C5–H5</td>
<td>107,1</td>
<td>C15–C14–C16</td>
<td>112,9(2)</td>
</tr>
<tr>
<td>N1–C5–C6</td>
<td>113,5(2)</td>
<td>C14–C15–H15A</td>
<td>109,5</td>
</tr>
<tr>
<td>N1–C5–C7</td>
<td>111,1(2)</td>
<td>C14–C15–H15B</td>
<td>109,5</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>107,2</td>
<td>C14–C15–H15C</td>
<td>109,5</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H5–C5–C7</td>
<td>107,1</td>
<td>H15A–C15–H15B</td>
<td>109,5</td>
</tr>
<tr>
<td>C6–C5–C7</td>
<td>110,5(3)</td>
<td>H15A–C15–H15C</td>
<td>109,5</td>
</tr>
<tr>
<td>C5–C6–H6A</td>
<td>109,4</td>
<td>H15B–C15–H15C</td>
<td>109,4</td>
</tr>
<tr>
<td>C5–C6–H6B</td>
<td>109,4</td>
<td>C14–C16–C17</td>
<td>119,2(2)</td>
</tr>
<tr>
<td>C5–C6–H6C</td>
<td>109,5</td>
<td>C14–C16–C21</td>
<td>122,7(3)</td>
</tr>
<tr>
<td>H6A–C6–H6B</td>
<td>109,5</td>
<td>C17–C16–C21</td>
<td>118,0(3)</td>
</tr>
<tr>
<td>H6A–C6–H6C</td>
<td>109,5</td>
<td>C16–C17–H17</td>
<td>119,4</td>
</tr>
<tr>
<td>H6B–C6–H6C</td>
<td>109,5</td>
<td>C16–C17–C18</td>
<td>121,3(3)</td>
</tr>
<tr>
<td>C5–C7–H7A</td>
<td>109,5</td>
<td>C17–C17–C18</td>
<td>119,4</td>
</tr>
<tr>
<td>C5–C7–H7B</td>
<td>109,4</td>
<td>C17–C18–H18</td>
<td>119,9</td>
</tr>
<tr>
<td>C5–C7–H7C</td>
<td>109,5</td>
<td>C17–C18–C19</td>
<td>120,2(3)</td>
</tr>
<tr>
<td>H7A–C7–H7B</td>
<td>109,4</td>
<td>H18–C18–C19</td>
<td>119,9</td>
</tr>
<tr>
<td>H7A–C7–H7C</td>
<td>109,5</td>
<td>C18–C18–H19</td>
<td>119,9</td>
</tr>
<tr>
<td>H7B–C7–H7C</td>
<td>109,6</td>
<td>C18–C19–C20</td>
<td>120,0(4)</td>
</tr>
<tr>
<td>N2–C8–H8</td>
<td>106,2</td>
<td>H19–C19–C20</td>
<td>120</td>
</tr>
<tr>
<td>N2–C8–C9</td>
<td>113,8(2)</td>
<td>C19–C20–H20</td>
<td>120,2</td>
</tr>
<tr>
<td>N2–C8–C10</td>
<td>111,6(2)</td>
<td>C19–C20–C21</td>
<td>119,6(3)</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>106,3</td>
<td>H20–C20–C21</td>
<td>120,2</td>
</tr>
<tr>
<td>H8–C8–C10</td>
<td>106,3</td>
<td>C16–C21–C20</td>
<td>120,9(3)</td>
</tr>
<tr>
<td>C9–C8–C10</td>
<td>112,0(2)</td>
<td>C16–C21–H21</td>
<td>119,6</td>
</tr>
<tr>
<td>C8–C9–H9A</td>
<td>109,5</td>
<td>C20–C21–H21</td>
<td>119,5</td>
</tr>
</tbody>
</table>
Результати РСД сполуки 2.4 b

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker Kappa APEX II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>$C_{21}H_{31}OPS_2 \cdot 1/2 \text{H}_2\text{O}$</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>403,56</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Моқα)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Моноклінна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>$P2_1/c$</td>
</tr>
<tr>
<td>a</td>
<td>12,9344(12) Å</td>
</tr>
<tr>
<td>b</td>
<td>13,5745(13) Å</td>
</tr>
<tr>
<td>c</td>
<td>12,3561(12) Å</td>
</tr>
<tr>
<td>α</td>
<td>90 °</td>
</tr>
<tr>
<td>β</td>
<td>95,213(5) °</td>
</tr>
<tr>
<td>γ</td>
<td>90 °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, V</td>
<td>2160,5(4) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>4</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,241 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>0,33 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>868</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,18x0,04x0,04 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Безбарвна голка</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>5,1–26,37 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>$-15 \leq h \leq 16$; $-16 \leq k \leq 16$; $-15 \leq l \leq 13$</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>18781/4379</td>
</tr>
<tr>
<td>Дані/ступені обмеження/параметри</td>
<td>4379/2/242</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,051</td>
</tr>
<tr>
<td>Кінцеві R індекси [$I>2\sigma(I)$]</td>
<td>$R = 0,0431$; $wR = 0,0862$</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,685$; $wR = 0,0967$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,449 та -0,275 еÅ⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки **2.4 b**

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–H1</td>
<td>1</td>
<td>C7–C12</td>
<td>1,530(3)</td>
<td>C14–H14</td>
<td>1,001</td>
</tr>
<tr>
<td>C1–C2</td>
<td>1,531(3)</td>
<td>C7–P1</td>
<td>1,825(2)</td>
<td>C14–C15</td>
<td>1,532(3)</td>
</tr>
<tr>
<td>C1–C6</td>
<td>1,540(3)</td>
<td>C8–H8A</td>
<td>0,989</td>
<td>C14–C16</td>
<td>1,512(3)</td>
</tr>
<tr>
<td>C1–P1</td>
<td>1,811(2)</td>
<td>C8–H8B</td>
<td>0,99</td>
<td>C14–S2</td>
<td>1,834(2)</td>
</tr>
<tr>
<td>C2–H2A</td>
<td>0,99</td>
<td>C8–C9</td>
<td>1,526(3)</td>
<td>C15–H15A</td>
<td>0,979</td>
</tr>
<tr>
<td>C2–H2B</td>
<td>0,99</td>
<td>C9–H9A</td>
<td>0,989</td>
<td>C15–H15B</td>
<td>0,98</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,520(3)</td>
<td>C9–H9B</td>
<td>0,991</td>
<td>C15–H15C</td>
<td>0,98</td>
</tr>
<tr>
<td>C3–H3A</td>
<td>0,99</td>
<td>C9–C10</td>
<td>1,525(4)</td>
<td>C16–C17</td>
<td>1,386(3)</td>
</tr>
<tr>
<td>C3–H3B</td>
<td>0,99</td>
<td>C10–H10A</td>
<td>0,991</td>
<td>C16–C21</td>
<td>1,398(3)</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,516(4)</td>
<td>C10–H10B</td>
<td>0,989</td>
<td>C17–H17</td>
<td>0,949</td>
</tr>
<tr>
<td>C4–H4A</td>
<td>0,99</td>
<td>C10–C11</td>
<td>1,516(4)</td>
<td>C17–C18</td>
<td>1,378(3)</td>
</tr>
<tr>
<td>C4–H4B</td>
<td>0,99</td>
<td>C11–H11A</td>
<td>0,99</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,518(3)</td>
<td>C11–H11B</td>
<td>0,99</td>
<td>C18–C19</td>
<td>1,370(3)</td>
</tr>
<tr>
<td>C5–H5A</td>
<td>0,99</td>
<td>C11–C12</td>
<td>1,517(3)</td>
<td>C19–H19</td>
<td>0,95</td>
</tr>
<tr>
<td>C5–H5B</td>
<td>0,99</td>
<td>C12–H12A</td>
<td>0,99</td>
<td>C19–C20</td>
<td>1,374(4)</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,520(3)</td>
<td>C12–H12B</td>
<td>0,99</td>
<td>C20–H20</td>
<td>0,95</td>
</tr>
<tr>
<td>C6–H6A</td>
<td>0,99</td>
<td>C13–P1</td>
<td>1,848(2)</td>
<td>C20–C21</td>
<td>1,391(4)</td>
</tr>
<tr>
<td>C6–H6B</td>
<td>0,99</td>
<td>C13–S1</td>
<td>1,635(2)</td>
<td>C21–H21</td>
<td>0,949</td>
</tr>
<tr>
<td>C7–H7</td>
<td>0,999</td>
<td>C13–S2</td>
<td>1,713(2)</td>
<td>O1–P1</td>
<td>1,489(2)</td>
</tr>
<tr>
<td>C7–C8</td>
<td>1,534(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки **2.4 b**

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1–C1–C2</td>
<td>109</td>
<td>C9–C10–C11</td>
<td>111,3(2)</td>
</tr>
<tr>
<td>H1–C1–C6</td>
<td>108,9</td>
<td>H10A–C10–H10B</td>
<td>108</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>H1–C1–P1</td>
<td>108,9</td>
<td>H10A–C10–C11</td>
<td>109,4</td>
</tr>
<tr>
<td>C2–C1–C6</td>
<td>110,6(2)</td>
<td>H10B–C10–C11</td>
<td>109,5</td>
</tr>
<tr>
<td>C2–C1–P1</td>
<td>110,6(1)</td>
<td>C10–C11–H11A</td>
<td>109,2</td>
</tr>
<tr>
<td>C6–C1–P1</td>
<td>108,8(1)</td>
<td>C10–C11–H11B</td>
<td>109,2</td>
</tr>
<tr>
<td>C1–C2–H2A</td>
<td>109,5</td>
<td>C10–C11–C12</td>
<td>112,0(2)</td>
</tr>
<tr>
<td>C1–C2–H2B</td>
<td>109,5</td>
<td>H11A–C11–H11B</td>
<td>107,9</td>
</tr>
<tr>
<td>C1–C2–C3</td>
<td>110,9(2)</td>
<td>H11A–C11–C12</td>
<td>109,2</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>108</td>
<td>H11B–C11–C12</td>
<td>109,2</td>
</tr>
<tr>
<td>H2A–C2–C3</td>
<td>109,4</td>
<td>C7–C12–C11</td>
<td>111,5(2)</td>
</tr>
<tr>
<td>H2B–C2–C3</td>
<td>109,5</td>
<td>C7–C12–H12A</td>
<td>109,3</td>
</tr>
<tr>
<td>C2–C3–H3A</td>
<td>109,3</td>
<td>C7–C12–H12B</td>
<td>109,3</td>
</tr>
<tr>
<td>C2–C3–H3B</td>
<td>109,3</td>
<td>C11–C12–H12A</td>
<td>109,3</td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>111,4(2)</td>
<td>C11–C12–H12B</td>
<td>109,3</td>
</tr>
<tr>
<td>H3A–C3–H3B</td>
<td>108</td>
<td>H12A–C12–H12B</td>
<td>108</td>
</tr>
<tr>
<td>H3A–C3–C4</td>
<td>109,4</td>
<td>P1–C13–S1</td>
<td>121,4(1)</td>
</tr>
<tr>
<td>H3B–C3–C4</td>
<td>109,4</td>
<td>P1–C13–S2</td>
<td>110,1(1)</td>
</tr>
<tr>
<td>C3–C4–H4A</td>
<td>109,5</td>
<td>S1–C13–S2</td>
<td>128,5(1)</td>
</tr>
<tr>
<td>C3–C4–H4B</td>
<td>109,5</td>
<td>H14–C14–C15</td>
<td>108,9</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>111,0(2)</td>
<td>H14–C14–C16</td>
<td>108,9</td>
</tr>
<tr>
<td>H4A–C4–H4B</td>
<td>108,1</td>
<td>H14–C14–S2</td>
<td>108,9</td>
</tr>
<tr>
<td>H4A–C4–C5</td>
<td>109,4</td>
<td>C15–C14–C16</td>
<td>113,4(2)</td>
</tr>
<tr>
<td>H4B–C4–C5</td>
<td>109,4</td>
<td>C15–C14–S2</td>
<td>110,9(2)</td>
</tr>
<tr>
<td>C4–C5–H5A</td>
<td>109,2</td>
<td>C16–C14–S2</td>
<td>105,8(2)</td>
</tr>
<tr>
<td>C4–C5–H5B</td>
<td>109,2</td>
<td>C14–C15–H15A</td>
<td>109,4</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>111,9(2)</td>
<td>C14–C15–H15B</td>
<td>109,4</td>
</tr>
<tr>
<td>H5A–C5–H5B</td>
<td>107,9</td>
<td>C14–C15–H15C</td>
<td>109,5</td>
</tr>
<tr>
<td>H5A–C5–C6</td>
<td>109,3</td>
<td>H15A–C15–H15B</td>
<td>109,5</td>
</tr>
<tr>
<td>H5B–C5–C6</td>
<td>109,2</td>
<td>H15A–C15–H15C</td>
<td>109,5</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>C1–C6–C5</td>
<td>111,7(2)</td>
<td>H15B–C15–H15C</td>
<td>109,5</td>
</tr>
<tr>
<td>C1–C6–H6A</td>
<td>109,3</td>
<td>C14–C16–C17</td>
<td>121,5(2)</td>
</tr>
<tr>
<td>C1–C6–H6B</td>
<td>109,3</td>
<td>C14–C16–C21</td>
<td>120,1(2)</td>
</tr>
<tr>
<td>C5–C6–H6A</td>
<td>109,3</td>
<td>C17–C16–C21</td>
<td>118,4(2)</td>
</tr>
<tr>
<td>C5–C6–H6B</td>
<td>109,3</td>
<td>C16–C17–H17</td>
<td>119,3</td>
</tr>
<tr>
<td>H6A–C6–H6B</td>
<td>108</td>
<td>C16–C17–C18</td>
<td>121,3(2)</td>
</tr>
<tr>
<td>H7–C7–C8</td>
<td>105,4</td>
<td>H17–C17–C18</td>
<td>119,3</td>
</tr>
<tr>
<td>H7–C7–C12</td>
<td>105,3</td>
<td>C17–C18–H18</td>
<td>120,2</td>
</tr>
<tr>
<td>H7–C7–P1</td>
<td>105,4</td>
<td>C17–C18–C19</td>
<td>119,7(2)</td>
</tr>
<tr>
<td>C8–C7–C12</td>
<td>111,1(2)</td>
<td>H18–C18–C19</td>
<td>120,1</td>
</tr>
<tr>
<td>C8–C7–P1</td>
<td>118,0(2)</td>
<td>C18–C19–H19</td>
<td>119,7</td>
</tr>
<tr>
<td>C12–C7–P1</td>
<td>110,5(2)</td>
<td>C18–C19–C20</td>
<td>120,6(2)</td>
</tr>
<tr>
<td>C7–C8–H8A</td>
<td>109,5</td>
<td>H19–C19–C20</td>
<td>119,8</td>
</tr>
<tr>
<td>C7–C8–H8B</td>
<td>109,5</td>
<td>C19–C20–H20</td>
<td>120</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>110,8(2)</td>
<td>C19–C20–C21</td>
<td>120,1(2)</td>
</tr>
<tr>
<td>H8A–C8–H8B</td>
<td>108,1</td>
<td>H20–C20–C21</td>
<td>119,9</td>
</tr>
<tr>
<td>H8A–C8–C9</td>
<td>109,4</td>
<td>C16–C21–C20</td>
<td>119,9(2)</td>
</tr>
<tr>
<td>H8B–C8–C9</td>
<td>109,5</td>
<td>C16–C21–H21</td>
<td>120,1</td>
</tr>
<tr>
<td>C8–C9–H9A</td>
<td>109,4</td>
<td>C20–C21–H21</td>
<td>120</td>
</tr>
<tr>
<td>C8–C9–H9B</td>
<td>109,4</td>
<td>C1–P1–C7</td>
<td>109,5(1)</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>111,0(2)</td>
<td>C1–P1–C13</td>
<td>105,9(1)</td>
</tr>
<tr>
<td>H9A–C9–H9B</td>
<td>108,1</td>
<td>C1–P1–O1</td>
<td>112,35(9)</td>
</tr>
<tr>
<td>H9A–C9–C10</td>
<td>109,5</td>
<td>C7–P1–C13</td>
<td>106,3(1)</td>
</tr>
<tr>
<td>H9B–C9–C10</td>
<td>109,4</td>
<td>C7–P1–O1</td>
<td>112,2(1)</td>
</tr>
<tr>
<td>C9–C10–H10A</td>
<td>109,3</td>
<td>C13–P1–O1</td>
<td>110,2(1)</td>
</tr>
<tr>
<td>C9–C10–H10B</td>
<td>109,3</td>
<td>C13–S2–C14</td>
<td>104,0(1)</td>
</tr>
</tbody>
</table>
Додаток 24. 1H ЯМР спектр сполуки 2.7 а

Додаток 25. 13C{1H} ЯМР спектр сполуки 2.7 а
Додаток 26. 119Sn$^{1}{^1}$H ЯМР спектр сполуки 2.7 a

Додаток 27. 1H ЯМР спектр сполуки 2.7 b
Додаток 28. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 б

Додаток 29. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 б
Додаток 30. 1Н ЯМР спектр сполуки 2.7 с

Додаток 31. 13С{1Н} ЯМР спектр сполуки 2.7 с
Додаток 32. $^{119}\text{Sn}^{[1\text{H}]}$ ЯМР спектр сполуки 2.7 с

Додаток 33. ^1H ЯМР спектр сполуки 2.7 д
Додаток 34. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки $2.7\, d$

Додаток 35. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки $2.7\, d$
Додаток 36. 19F 1H ЯМР спектр сполуки 2.7 d

Додаток 37. 1H ЯМР спектр сполуки 2.7 e
Додаток 38. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 е

Додаток 39. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 е
Додаток 40. 1H ЯМР спектр сполуки 2.7 f

Додаток 41. 13C{1H} ЯМР спектр сполуки 2.7 f
Додаток 42. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 f

Додаток 43. ^1H ЯМР спектр сполуки 2.7 g
Додаток 44. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 г

Додаток 45. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 г
Додаток 46. 1Н ЯМР спектр сполуки 2.7 h

Додаток 47. 13С{1Н} ЯМР спектр сполуки 2.7 h
Додаток 48. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 h

Додаток 49

Результати РСД сполуки 2.7 b

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker AXS SMART APEX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C${27}$H${24}$SnS$_2$</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>531.31</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0.71073 Å (Mo K$_\alpha$)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>P1</td>
</tr>
<tr>
<td>a</td>
<td>9.7519(2) Å</td>
</tr>
<tr>
<td>b</td>
<td>10.2680(2) Å</td>
</tr>
<tr>
<td>c</td>
<td>12.8410(2) Å</td>
</tr>
<tr>
<td>α</td>
<td>75.3580(10) °</td>
</tr>
<tr>
<td>β</td>
<td>75.2610(10) °</td>
</tr>
<tr>
<td>γ</td>
<td>82.3040(10) °</td>
</tr>
</tbody>
</table>
Продовження додатку 49

<table>
<thead>
<tr>
<th>Об’єм елементарної комірки, V</th>
<th>1199,78(4) Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число молекул в комірці, Z</td>
<td>2</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,471 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>1,25 мм⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>536</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,24x0,1x0,06 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Пурпурний блок</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>2,06–25,34 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-11 ≤ h ≤ 11; -12 ≤ k ≤ 12; -15 ≤ l ≤ 15</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>18346/4149</td>
</tr>
<tr>
<td>Дані/ступені обмеження/параметри</td>
<td>4149/0/272</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F²</td>
<td>1,314</td>
</tr>
<tr>
<td>Кінцеві R індекси [I>2σ(I)]</td>
<td>R = 0,054; wR = 0,1296</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>R = 0,0589; wR = 0,1342</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>1,39 та -1,59 eÅ⁻³</td>
</tr>
</tbody>
</table>

Додаток 50

Значення довжин зв’язків у структурі сполуки 2.7 b

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–C2</td>
<td>1,385(9)</td>
<td>C10–H10</td>
<td>0,95</td>
<td>C19–Sn1</td>
<td>2,191(8)</td>
</tr>
<tr>
<td>C1–C6</td>
<td>1,399(9)</td>
<td>C10–C11</td>
<td>1,37(1)</td>
<td>C20–H20</td>
<td>1,001</td>
</tr>
<tr>
<td>C1–Sn1</td>
<td>2,140(6)</td>
<td>C11–H11</td>
<td>0,949</td>
<td>C20–C21</td>
<td>1,52(1)</td>
</tr>
<tr>
<td>C2–H2</td>
<td>0,951</td>
<td>C11–C12</td>
<td>1,38(1)</td>
<td>C20–C22</td>
<td>1,51(1)</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,40(1)</td>
<td>C12–H12</td>
<td>0,95</td>
<td>C20–S2</td>
<td>1,838(8)</td>
</tr>
<tr>
<td>C3–H3</td>
<td>0,95</td>
<td>C13–C14</td>
<td>1,39(1)</td>
<td>C21–H21A</td>
<td>0,98</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,38(1)</td>
<td>C13–C18</td>
<td>1,39(1)</td>
<td>C21–H21B</td>
<td>0,98</td>
</tr>
<tr>
<td>C4–H4</td>
<td>0,95</td>
<td>C13–Sn1</td>
<td>2,139(8)</td>
<td>C21–H21C</td>
<td>0,98</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,37(1)</td>
<td>C14–H14</td>
<td>0,95</td>
<td>C22–C23</td>
<td>1,39(1)</td>
</tr>
</tbody>
</table>
Зв’язок | Довжина, Å | Зв’язок | Довжина, Å | Зв’язок | Довжина, Å |
---|---|---|---|---|---|
C5–H5 | 0,95 | C14–C15 | 1,40(1) | C22–C27 | 1,39(1) |
C5–C6 | 1,39(1) | C15–H15 | 0,951 | C23–H23 | 0,951 |
C6–H6 | 0,95 | C15–C16 | 1,37(1) | C23–C24 | 1,38(2) |
C7–C8 | 1,38(1) | C16–H16 | 0,95 | C24–H24 | 0,95 |
C7–C12 | 1,39(1) | C16–C17 | 1,36(1) | C24–C25 | 1,36(1) |
C7–Sn1 | 2,134(6) | C17–H17 | 0,95 | C25–H25 | 0,95 |
C8–H8 | 0,95 | C17–C18 | 1,39(1) | C25–C26 | 1,35(2) |
C8–C9 | 1,39(1) | C18–H18 | 0,95 | C26–H26 | 0,95 |
C9–H9 | 0,95 | C19–S1 | 1,626(7) | C26–C27 | 1,38(2) |
C9–C10 | 1,38(1) | C19–S2 | 1,681(7) | C27–H27 | 0,95 |

Продовження додатку 50

Додаток 51

Значення кутів між зв’язками в структурі сполуки \(2.7\) b

Кут	Значення, °	Кут	Значення, °
C2–C1–C6 | 118,0(7) | H16–C16–C17 | 120 |
C2–C1–Sn1 | 121,5(5) | C16–C17–H17 | 119,7 |
C6–C1–Sn1 | 120,4(5) | C16–C17–C18 | 120,7(8) |
C1–C2–H2 | 119,5 | H17–C17–C18 | 119,6 |
C1–C2–C3 | 121,0(7) | C13–C18–C17 | 119,8(7) |
H2–C2–C3 | 119,5 | C13–C18–H18 | 120,1 |
C2–C3–H3 | 120,1 | C17–C18–H18 | 120,1 |
C2–C3–C4 | 119,8(7) | S1–C19–S2 | 127,7(5) |
H3–C3–C4 | 120,1 | S1–C19–Sn1 | 117,8(4) |
C3–C4–H4 | 120 | S2–C19–Sn1 | 114,5(4) |
C3–C4–C5 | 119,9(8) | H20–C20–C21 | 107,7 |
H4–C4–C5 | 120 | H20–C20–C22 | 107,6 |
C4–C5–H5 | 119,8 | H20–C20–S2 | 107,6 |
Показання додатку 51

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4–C5–C6</td>
<td>120,4(8)</td>
<td>C21–C20–C22</td>
<td>116,8(7)</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>119,8</td>
<td>C21–C20–S2</td>
<td>109,1(6)</td>
</tr>
<tr>
<td>C1–C6–C5</td>
<td>120,9(7)</td>
<td>C22–C20–S2</td>
<td>107,7(6)</td>
</tr>
<tr>
<td>C1–C6–H6</td>
<td>119,6</td>
<td>C20–C21–H21A</td>
<td>109,4</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>119,5</td>
<td>C20–C21–H21B</td>
<td>109,5</td>
</tr>
<tr>
<td>C8–C7–C12</td>
<td>118,8(7)</td>
<td>C20–C21–H21C</td>
<td>109,5</td>
</tr>
<tr>
<td>C8–C7–Sn1</td>
<td>121,1(5)</td>
<td>H21A–C21–H21B</td>
<td>109</td>
</tr>
<tr>
<td>C12–C7–Sn1</td>
<td>120,0(5)</td>
<td>H21A–C21–H21C</td>
<td>109</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>119,7</td>
<td>H21B–C21–H21C</td>
<td>109</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>120,5(7)</td>
<td>C20–C22–C23</td>
<td>119,9(7)</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>119,7</td>
<td>C20–C22–C27</td>
<td>122,8(8)</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>119,9</td>
<td>C23–C22–C27</td>
<td>117,3(8)</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>120,3(7)</td>
<td>C22–C23–H23</td>
<td>119,3</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>119,9</td>
<td>C22–C23–C24</td>
<td>121,4(9)</td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>120,3</td>
<td>H23–C23–C24</td>
<td>119</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>119,4(8)</td>
<td>C23–C24–H24</td>
<td>120</td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>120,3</td>
<td>C23–C24–C25</td>
<td>120(1)</td>
</tr>
<tr>
<td>C10–C11–H11</td>
<td>119,7</td>
<td>H24–C24–C25</td>
<td>120</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>120,6(8)</td>
<td>C24–C25–H25</td>
<td>120</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>119,8</td>
<td>C24–C25–C26</td>
<td>119(1)</td>
</tr>
<tr>
<td>C7–C12–C11</td>
<td>120,4(7)</td>
<td>H25–C25–C26</td>
<td>120</td>
</tr>
<tr>
<td>C7–C12–H12</td>
<td>119,9</td>
<td>C25–C26–H26</td>
<td>119</td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>119,7</td>
<td>C25–C26–C27</td>
<td>122(1)</td>
</tr>
<tr>
<td>C14–C13–C18</td>
<td>119,4(7)</td>
<td>H26–C26–C27</td>
<td>119</td>
</tr>
<tr>
<td>C14–C13–Sn1</td>
<td>120,3(5)</td>
<td>C22–C27–C26</td>
<td>120,0(9)</td>
</tr>
<tr>
<td>C18–C13–Sn1</td>
<td>120,2(5)</td>
<td>C22–C27–H27</td>
<td>120</td>
</tr>
<tr>
<td>C13–C14–H14</td>
<td>120,3</td>
<td>C26–C27–H27</td>
<td>120</td>
</tr>
<tr>
<td>C13–C14–C15</td>
<td>119,5(7)</td>
<td>C19–S2–C20</td>
<td>106,2(4)</td>
</tr>
</tbody>
</table>
Продовження додатку 51

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>H14–C14–C15</td>
<td>120,2</td>
<td>C1–Sn1–C7</td>
<td>109,6(3)</td>
</tr>
<tr>
<td>C14–C15–H15</td>
<td>119,8</td>
<td>C1–Sn1–C13</td>
<td>110,5(3)</td>
</tr>
<tr>
<td>C14–C15–C16</td>
<td>120,5(7)</td>
<td>C1–Sn1–C19</td>
<td>111,5(3)</td>
</tr>
<tr>
<td>H15–C15–C16</td>
<td>119,7</td>
<td>C7–Sn1–C13</td>
<td>111,3(3)</td>
</tr>
<tr>
<td>C15–C16–H16</td>
<td>119,9</td>
<td>C7–Sn1–C19</td>
<td>107,3(3)</td>
</tr>
<tr>
<td>C15–C16–C17</td>
<td>120,1(8)</td>
<td>C13–Sn1–C19</td>
<td>106,6(3)</td>
</tr>
</tbody>
</table>

Додаток 52

Результати РСД сполуки 2.7 c

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker AXS SMART APEX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C_{26}H_{21}NO_{2}SnS_{2}</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>562,29</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo\textsubscript{Kα})</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>P1</td>
</tr>
<tr>
<td>a</td>
<td>9,6552(3) Å</td>
</tr>
<tr>
<td>b</td>
<td>10,3979(3) Å</td>
</tr>
<tr>
<td>c</td>
<td>13,6765(4) Å</td>
</tr>
<tr>
<td>α</td>
<td>104,0340(10) °</td>
</tr>
<tr>
<td>β</td>
<td>110,097(2) °</td>
</tr>
<tr>
<td>γ</td>
<td>98,9030(10) °</td>
</tr>
<tr>
<td>Об’єм елементарної комірки, V</td>
<td>1207,48(6) Å3</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>2</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,546 г/см3</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>1,254 мм-1</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>564</td>
</tr>
</tbody>
</table>
Розміри кристалу | 0,1х0,08х0,04 мм
Вигляд кристалу | Пурпурний блок
Межі кута Θ | 2,26–25,35 °
Межі індексів | -11 ≤ h ≤ 11; -12 ≤ k ≤ 12; -16 ≤ l ≤ 16
Зібрані відображення/унікальні | 19826/4389
Дані/ступені обмеження/параметри | 4389/0/289
Коефіцієнт відповідності, F² | 1,063
Кінцеві R індекси [I>2σ(I)] | R = 0,03; wR = 0,0539
R індекси для всіх даних | R = 0,0386; wR = 0,0564
Дифракційні екстремуми | 0,59 та -0,449 еА⁻³

Додаток 53

Значення довжин зв’язків у структурі сполуки 2.7 с

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–C2</td>
<td>1,387(4)</td>
<td>C10–H10</td>
<td>0,95</td>
<td>C19–Sn1</td>
<td>2,181(2)</td>
</tr>
<tr>
<td>C1–C6</td>
<td>1,395(4)</td>
<td>C10–C11</td>
<td>1,372(4)</td>
<td>C20–H20A</td>
<td>0,99</td>
</tr>
<tr>
<td>C1–Sn1</td>
<td>2,129(3)</td>
<td>C11–H11</td>
<td>0,951</td>
<td>C20–H20B</td>
<td>0,99</td>
</tr>
<tr>
<td>C2–H2</td>
<td>0,95</td>
<td>C11–C12</td>
<td>1,389(4)</td>
<td>C20–C21</td>
<td>1,497(4)</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,380(5)</td>
<td>C12–H12</td>
<td>0,95</td>
<td>C20–S2</td>
<td>1,821(2)</td>
</tr>
<tr>
<td>C3–H3</td>
<td>0,95</td>
<td>C13–C14</td>
<td>1,396(4)</td>
<td>C21–C22</td>
<td>1,383(4)</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,383(5)</td>
<td>C13–C18</td>
<td>1,393(4)</td>
<td>C21–C26</td>
<td>1,389(4)</td>
</tr>
<tr>
<td>C4–H4</td>
<td>0,95</td>
<td>C13–Sn1</td>
<td>2,125(3)</td>
<td>C22–H22</td>
<td>0,95</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,366(4)</td>
<td>C14–H14</td>
<td>0,95</td>
<td>C22–C23</td>
<td>1,376(4)</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,95</td>
<td>C14–C15</td>
<td>1,382(4)</td>
<td>C23–H23</td>
<td>0,95</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,384(5)</td>
<td>C15–H15</td>
<td>0,95</td>
<td>C23–C24</td>
<td>1,380(4)</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,949</td>
<td>C15–C16</td>
<td>1,374(4)</td>
<td>C24–C25</td>
<td>1,371(4)</td>
</tr>
<tr>
<td>C7–C8</td>
<td>1,391(4)</td>
<td>C16–H16</td>
<td>0,95</td>
<td>C24–N1</td>
<td>1,467(5)</td>
</tr>
<tr>
<td>C7–C12</td>
<td>1,393(5)</td>
<td>C16–C17</td>
<td>1,375(4)</td>
<td>C25–H25</td>
<td>0,95</td>
</tr>
</tbody>
</table>
Зв’язок | Довжина, Å | Зв’язок | Довжина, Å | Зв’язок | Довжина, Å |
---|---|---|---|---|---|
C7–Sn1 | 2,131(3) | C17–H17 | 0,95 | C25–C26 | 1,378(4) |
C8–H8 | 0,95 | C17–C18 | 1,381(4) | C26–H26 | 0,95 |
C8–C9 | 1,386(4) | C18–H18 | 0,95 | N1–O1 | 1,223(5) |
C9–H9 | 0,949 | C19–S1 | 1,626(3) | N1–O2 | 1,224(4) |
C9–C10 | 1,385(5) | C19–S2 | 1,719(3) |

Продовження додатку 53

Кут	Значення, °	Кут	Значення, °
C2–C1–C6 | 117,9(3) | C15–C16–C17 | 120,1(3) |
C2–C1–Sn1 | 121,3(2) | H16–C16–C17 | 119,9 |
C6–C1–Sn1 | 120,9(2) | C16–C17–H17 | 119,9 |
C1–C2–H2 | 119,5 | C16–C17–C18 | 120,1(3) |
C1–C2–C3 | 121,1(3) | H17–C17–C18 | 119,9 |
H2–C2–C3 | 119,5 | C13–C18–C17 | 120,8(3) |
C2–C3–H3 | 120 | C13–C18–H18 | 119,6 |
C2–C3–C4 | 119,9(3) | C17–C18–H18 | 119,7 |
H3–C3–C4 | 120,1 | S1–C19–S2 | 127,4(2) |
C3–C4–H4 | 119,9 | S1–C19–Sn1 | 118,3(2) |
C3–C4–C5 | 120,1(3) | S2–C19–Sn1 | 114,4(1) |
H4–C4–C5 | 120 | H20A–C20–H20B | 107,8 |
C4–C5–H5 | 120 | H20A–C20–C21 | 108,9 |
C4–C5–C6 | 120,0(3) | H20A–C20–S2 | 109,1 |
H5–C5–C6 | 120 | H20B–C20–C21 | 109 |
C1–C6–C5 | 121,0(3) | H20B–C20–S2 | 109,1 |
C1–C6–H6 | 119,5 | C21–C20–S2 | 112,9(2) |
C5–C6–H6 | 119,5 | C20–C21–C22 | 121,4(3) |

Додаток 54

Значення кутів між зв’язками в структурі сполуки 2.7 с
<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8–C7–C12</td>
<td>118,3(3)</td>
<td>C20–C21–C26</td>
<td>119,8(3)</td>
</tr>
<tr>
<td>C8–C7–Sn1</td>
<td>120,1(2)</td>
<td>C22–C21–C26</td>
<td>118,7(3)</td>
</tr>
<tr>
<td>C12–C7–Sn1</td>
<td>121,4(2)</td>
<td>C21–C22–H22</td>
<td>119,4</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>119,4</td>
<td>C21–C22–C23</td>
<td>121,3(3)</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>121,1(3)</td>
<td>H22–C22–C23</td>
<td>119,3</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>119,4</td>
<td>C22–C23–H23</td>
<td>120,9</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>120,3</td>
<td>C22–C23–C24</td>
<td>118,3(3)</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>119,5(3)</td>
<td>H23–C23–C24</td>
<td>120,8</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>120,2</td>
<td>C23–C24–C25</td>
<td>122,1(3)</td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>119,8</td>
<td>C23–C24–N1</td>
<td>119,2(3)</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>120,4(3)</td>
<td>C25–C24–N1</td>
<td>118,6(3)</td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>119,8</td>
<td>C24–C25–H25</td>
<td>120,7</td>
</tr>
<tr>
<td>C10–C11–H11</td>
<td>120</td>
<td>C24–C25–C26</td>
<td>118,7(3)</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>120,1(3)</td>
<td>H25–C25–C26</td>
<td>120,7</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>119,9</td>
<td>C21–C26–C25</td>
<td>120,9(3)</td>
</tr>
<tr>
<td>C7–C12–C11</td>
<td>120,6(3)</td>
<td>C21–C26–H26</td>
<td>119,5</td>
</tr>
<tr>
<td>C7–C12–H12</td>
<td>119,7</td>
<td>C25–C26–H26</td>
<td>119,6</td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>119,7</td>
<td>C24–N1–O1</td>
<td>118,6(3)</td>
</tr>
<tr>
<td>C14–C13–C18</td>
<td>118,2(3)</td>
<td>C24–N1–O2</td>
<td>117,8(3)</td>
</tr>
<tr>
<td>C14–C13–Sn1</td>
<td>120,0(2)</td>
<td>O1–N1–O2</td>
<td>123,6(3)</td>
</tr>
<tr>
<td>C18–C13–Sn1</td>
<td>121,9(2)</td>
<td>C19–S2–C20</td>
<td>105,9(1)</td>
</tr>
<tr>
<td>C13–C14–H14</td>
<td>119,7</td>
<td>C1–Sn1–C7</td>
<td>109,9(1)</td>
</tr>
<tr>
<td>C13–C14–C15</td>
<td>120,6(3)</td>
<td>C1–Sn1–C13</td>
<td>112,7(1)</td>
</tr>
<tr>
<td>H14–C14–C15</td>
<td>119,7</td>
<td>C1–Sn1–C19</td>
<td>108,9(1)</td>
</tr>
<tr>
<td>C14–C15–H15</td>
<td>119,9</td>
<td>C7–Sn1–C13</td>
<td>110,7(1)</td>
</tr>
<tr>
<td>C14–C15–C16</td>
<td>120,2(3)</td>
<td>C7–Sn1–C19</td>
<td>108,2(1)</td>
</tr>
<tr>
<td>H15–C15–C16</td>
<td>119,9</td>
<td>C13–Sn1–C19</td>
<td>106,3(1)</td>
</tr>
<tr>
<td>C15–C16–H16</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прилад</td>
<td>Bruker AXS SMART APEX II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Молекулярна формула</td>
<td>C_{26}H_{21}FSnS_{2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>535,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo_{Kα})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Просторова група</td>
<td>P̅T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>9,6093(3) Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>10,0234(3) Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>12,4666(5) Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>94,634(2) °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$β$</td>
<td>101,411(2) °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$γ$</td>
<td>97,614(2) °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Об'єм елементарної комірки, V</td>
<td>1159,55(7) Å³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Густина, $ρ$</td>
<td>1,533 г/см³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, $μ$</td>
<td>1,3 мм⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(000)$</td>
<td>536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,6x0,3x0,2 мм</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Рожева голка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Межі кута $Θ$</td>
<td>2,77–27,48 °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-11 ≤ h ≤ 12; -12 ≤ k ≤ 13; -16 ≤ l ≤ 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>12759/5278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>5278/0/271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кінцеві R індекси [$I > 2σ(I)$]</td>
<td>$R = 0,0541$; $wR = 0,1285$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,0671$; $wR = 0,1441$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>3,266 та -1,28 еÅ⁻³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 2.7 d

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn1–C1</td>
<td>2,155(5)</td>
<td>C7–H7</td>
<td>0,95</td>
<td>C17–H17</td>
<td>0,951</td>
</tr>
<tr>
<td>Sn1–C9</td>
<td>2,140(4)</td>
<td>C7–C8</td>
<td>1,35(1)</td>
<td>C17–C18</td>
<td>1,376(8)</td>
</tr>
<tr>
<td>Sn1–C15</td>
<td>2,142(5)</td>
<td>C8–H8</td>
<td>0,949</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
<tr>
<td>Sn1–C21</td>
<td>2,130(5)</td>
<td>C9–C10</td>
<td>1,391(7)</td>
<td>C18–C19</td>
<td>1,37(1)</td>
</tr>
<tr>
<td>S1–C1</td>
<td>1,608(6)</td>
<td>C9–C14</td>
<td>1,388(7)</td>
<td>C19–H19</td>
<td>0,95</td>
</tr>
<tr>
<td>S2–C1</td>
<td>1,767(5)</td>
<td>C10–H10</td>
<td>0,949</td>
<td>C19–C20</td>
<td>1,392(9)</td>
</tr>
<tr>
<td>S2–C2</td>
<td>1,816(7)</td>
<td>C10–C11</td>
<td>1,373(7)</td>
<td>C20–H20</td>
<td>0,95</td>
</tr>
<tr>
<td>F1–C6</td>
<td>1,35(1)</td>
<td>C11–H11</td>
<td>0,95</td>
<td>C21–C22</td>
<td>1,400(7)</td>
</tr>
<tr>
<td>C2–H2A</td>
<td>0,99</td>
<td>C11–C12</td>
<td>1,390(9)</td>
<td>C21–C26</td>
<td>1,408(8)</td>
</tr>
<tr>
<td>C2–H2B</td>
<td>0,991</td>
<td>C12–H12</td>
<td>0,949</td>
<td>C22–H22</td>
<td>0,95</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,512(8)</td>
<td>C12–C13</td>
<td>1,36(1)</td>
<td>C22–C23</td>
<td>1,379(8)</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,388(9)</td>
<td>C13–H13</td>
<td>0,95</td>
<td>C23–H23</td>
<td>0,95</td>
</tr>
<tr>
<td>C3–C8</td>
<td>1,382(8)</td>
<td>C13–C14</td>
<td>1,387(7)</td>
<td>C23–C24</td>
<td>1,386(9)</td>
</tr>
<tr>
<td>C4–H4</td>
<td>0,951</td>
<td>C14–H14</td>
<td>0,951</td>
<td>C24–H24</td>
<td>0,95</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,367(9)</td>
<td>C15–C16</td>
<td>1,377(7)</td>
<td>C24–C25</td>
<td>1,387(8)</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,95</td>
<td>C15–C20</td>
<td>1,396(7)</td>
<td>C25–H25</td>
<td>0,95</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,39(1)</td>
<td>C16–H16</td>
<td>0,95</td>
<td>C25–C26</td>
<td>1,380(8)</td>
</tr>
<tr>
<td>C6–C7</td>
<td>1,35(1)</td>
<td>C16–C17</td>
<td>1,393(9)</td>
<td>C26–H26</td>
<td>0,95</td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки 2.7 d

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–Sn1–C9</td>
<td>102,9(2)</td>
<td>C11–C12–C13</td>
<td>120,1(6)</td>
</tr>
<tr>
<td>C1–Sn1–C15</td>
<td>109,5(2)</td>
<td>H12–C12–C13</td>
<td>120</td>
</tr>
<tr>
<td>C1–Sn1–C21</td>
<td>109,0(2)</td>
<td>C12–C13–H13</td>
<td>119,9</td>
</tr>
<tr>
<td>C9–Sn1–C15</td>
<td>109,5(2)</td>
<td>C12–C13–C14</td>
<td>120,1(6)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C9–Sn1–C21</td>
<td>113,0(2)</td>
<td>H13–C13–C14</td>
<td>120</td>
</tr>
<tr>
<td>C15–Sn1–C21</td>
<td>112,5(2)</td>
<td>C9–C14–C13</td>
<td>120,5(5)</td>
</tr>
<tr>
<td>C1–S2–C2</td>
<td>107,5(3)</td>
<td>C9–C14–H14</td>
<td>119,8</td>
</tr>
<tr>
<td>Sn1–C1–S1</td>
<td>123,8(3)</td>
<td>C13–C14–H14</td>
<td>119,7</td>
</tr>
<tr>
<td>Sn1–C1–S2</td>
<td>110,9(2)</td>
<td>Sn1–C15–C16</td>
<td>120,8(4)</td>
</tr>
<tr>
<td>S1–C1–S2</td>
<td>125,3(3)</td>
<td>Sn1–C15–C20</td>
<td>120,6(4)</td>
</tr>
<tr>
<td>S2–C2–H2A</td>
<td>109,5</td>
<td>C16–C15–C20</td>
<td>118,6(5)</td>
</tr>
<tr>
<td>S2–C2–H2B</td>
<td>109,5</td>
<td>C15–C16–H16</td>
<td>119,6</td>
</tr>
<tr>
<td>S2–C2–C3</td>
<td>110,7(4)</td>
<td>C15–C16–C17</td>
<td>120,8(5)</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>108</td>
<td>H16–C16–C17</td>
<td>119,6</td>
</tr>
<tr>
<td>H2A–C2–C3</td>
<td>109,6</td>
<td>C16–C17–H17</td>
<td>119,9</td>
</tr>
<tr>
<td>H2B–C2–C3</td>
<td>109,5</td>
<td>C16–C17–C18</td>
<td>120,1(6)</td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>120,1(5)</td>
<td>H17–C17–C18</td>
<td>120</td>
</tr>
<tr>
<td>C2–C3–C8</td>
<td>121,5(5)</td>
<td>C17–C18–H18</td>
<td>120</td>
</tr>
<tr>
<td>C4–C3–C8</td>
<td>118,5(6)</td>
<td>C17–C18–C19</td>
<td>119,9(7)</td>
</tr>
<tr>
<td>C3–C4–H4</td>
<td>119,3</td>
<td>H18–C18–C19</td>
<td>120,1</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>121,3(6)</td>
<td>C18–C19–H19</td>
<td>119,8</td>
</tr>
<tr>
<td>H4–C4–C5</td>
<td>119,3</td>
<td>C18–C19–C20</td>
<td>120,4(6)</td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>121,5</td>
<td>H19–C19–C20</td>
<td>119,8</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>117,0(7)</td>
<td>C15–C20–C19</td>
<td>120,2(6)</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>121,5</td>
<td>C15–C20–H20</td>
<td>119,9</td>
</tr>
<tr>
<td>F1–C6–C5</td>
<td>117,2(8)</td>
<td>C19–C20–H20</td>
<td>119,9</td>
</tr>
<tr>
<td>F1–C6–C7</td>
<td>120,2(8)</td>
<td>Sn1–C21–C22</td>
<td>120,3(4)</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>122,7(8)</td>
<td>Sn1–C21–C26</td>
<td>121,1(4)</td>
</tr>
<tr>
<td>C6–C7–H7</td>
<td>120,5</td>
<td>C22–C21–C26</td>
<td>118,6(5)</td>
</tr>
<tr>
<td>C6–C7–C8</td>
<td>119,0(8)</td>
<td>C21–C22–H22</td>
<td>119,7</td>
</tr>
<tr>
<td>H7–C7–C8</td>
<td>120,5</td>
<td>C21–C22–C23</td>
<td>120,7(5)</td>
</tr>
<tr>
<td>C3–C8–C7</td>
<td>121,4(7)</td>
<td>H22–C22–C23</td>
<td>119,6</td>
</tr>
</tbody>
</table>
Продовження додатку 57

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3–C8–H8</td>
<td>119,2</td>
<td>C22–C23–H23</td>
<td>119,9</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>119,3</td>
<td>C22–C23–C24</td>
<td>120,3(5)</td>
</tr>
<tr>
<td>Sn1–C9–C10</td>
<td>119,1(4)</td>
<td>H23–C23–C24</td>
<td>119,9</td>
</tr>
<tr>
<td>Sn1–C9–C14</td>
<td>122,2(4)</td>
<td>C23–C24–H24</td>
<td>120,1</td>
</tr>
<tr>
<td>C10–C9–C14</td>
<td>118,7(5)</td>
<td>C23–C24–C25</td>
<td>119,7(5)</td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>119,7</td>
<td>H24–C24–C25</td>
<td>120,1</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>120,6(5)</td>
<td>C24–C25–H25</td>
<td>119,7</td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>119,7</td>
<td>C24–C25–C26</td>
<td>120,6(5)</td>
</tr>
<tr>
<td>C10–C11–H11</td>
<td>120</td>
<td>H25–C25–C26</td>
<td>119,7</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>120,0(6)</td>
<td>C21–C26–C25</td>
<td>120,1(5)</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>120</td>
<td>C21–C26–H26</td>
<td>119,9</td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>120</td>
<td>C25–C26–H26</td>
<td>120</td>
</tr>
</tbody>
</table>

Додаток 58

Результати РСД сполуки 2.7 f

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker Kappa APEX II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C_{21}H_{17}NSnS_{2}</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>466,17</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo_Kα)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>$P\bar{1}$</td>
</tr>
<tr>
<td>a</td>
<td>9,8623(15) Å</td>
</tr>
<tr>
<td>b</td>
<td>10,0392(14) Å</td>
</tr>
<tr>
<td>c</td>
<td>10,9535(18) Å</td>
</tr>
<tr>
<td>α</td>
<td>92,002(6) °</td>
</tr>
<tr>
<td>β</td>
<td>107,203(5) °</td>
</tr>
</tbody>
</table>
Продовження додатку 58

<table>
<thead>
<tr>
<th>Об’єм елементарної комірки, V</th>
<th>1003,4(3) Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число молекул в комірці, Z</td>
<td>2</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,543 g/cm³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>1,484 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>464</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,15х0,10х0,01 mm</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Рожева пластинка</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>5,11–26,02 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-12 ≤ h ≤ 12; -12 ≤ k ≤ 12; -13 ≤ l ≤ 13</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>18891/3931</td>
</tr>
<tr>
<td>Дані/ступені обмеження/параметри</td>
<td>3931/0/226</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>0,973</td>
</tr>
<tr>
<td>Кінцеві R індекси [$I>2\sigma(I)$]</td>
<td>$R = 0,05; wR = 0,0724$</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,1149; wR = 0,0889$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,515 та -1,015 еÅ⁻³</td>
</tr>
</tbody>
</table>

Додаток 59

Значення довжин зв’язків у структурі сполуки 2.7 f

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn1–C1</td>
<td>2,185(6)</td>
<td>C6–H6</td>
<td>0,95</td>
<td>C14–H14</td>
<td>0,95</td>
</tr>
<tr>
<td>Sn1–C4</td>
<td>2,128(6)</td>
<td>C6–C7</td>
<td>1,36(1)</td>
<td>C14–C15</td>
<td>1,384(8)</td>
</tr>
<tr>
<td>Sn1–C10</td>
<td>2,121(5)</td>
<td>C7–H7</td>
<td>0,95</td>
<td>C15–H15</td>
<td>0,95</td>
</tr>
<tr>
<td>Sn1–C16</td>
<td>2,114(5)</td>
<td>C7–C8</td>
<td>1,37(1)</td>
<td>C16–C17</td>
<td>1,387(9)</td>
</tr>
<tr>
<td>S1–C1</td>
<td>1,718(7)</td>
<td>C8–H8</td>
<td>0,95</td>
<td>C16–C21</td>
<td>1,399(8)</td>
</tr>
<tr>
<td>S1–C2</td>
<td>1,810(6)</td>
<td>C8–C9</td>
<td>1,38(1)</td>
<td>C17–H17</td>
<td>0,95</td>
</tr>
<tr>
<td>S2–C1</td>
<td>1,624(6)</td>
<td>C9–H9</td>
<td>0,95</td>
<td>C17–C18</td>
<td>1,38(1)</td>
</tr>
<tr>
<td>N1–C3</td>
<td>1,122(8)</td>
<td>C10–C11</td>
<td>1,38(1)</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
</tbody>
</table>
Зв’язок | Довжина, Å | Зв’язок | Довжина, Å | Зв’язок | Довжина, Å |
--- | --- | --- | --- | --- | --- |
C2–H2A | 0,99 | C10–C15 | 1,396(8) | C18–C19 | 1,36(1) |
C2–H2B | 0,99 | C11–H11 | 0,95 | C19–H19 | 0,95 |
C2–C3 | 1,476(8) | C11–C12 | 1,392(9) | C19–C20 | 1,36(1) |
C4–C5 | 1,396(8) | C12–H12 | 0,95 | C20–H20 | 0,95 |
C4–C9 | 1,373(8) | C12–C13 | 1,39(1) | C20–C21 | 1,390(9) |
C5–H5 | 0,95 | C13–H13 | 0,95 | C21–H21 | 0,95 |
C5–C6 | 1,397(9) | C13–C14 | 1,38(1) |

Додаток 60

Значення кутів між зв’язками в структурі сполуки 2.7 f

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–Sn1–C4</td>
<td>111,5(2)</td>
<td>Sn1–C10–C15</td>
<td>121,0(4)</td>
</tr>
<tr>
<td>C1–Sn1–C10</td>
<td>102,5(2)</td>
<td>C11–C10–C15</td>
<td>118,1(5)</td>
</tr>
<tr>
<td>C1–Sn1–C16</td>
<td>106,1(2)</td>
<td>C10–C11–H11</td>
<td>119,3</td>
</tr>
<tr>
<td>C4–Sn1–C10</td>
<td>114,2(2)</td>
<td>C10–C11–C12</td>
<td>121,3(6)</td>
</tr>
<tr>
<td>C4–Sn1–C16</td>
<td>110,1(2)</td>
<td>H11–C11–C12</td>
<td>119,4</td>
</tr>
<tr>
<td>C10–Sn1–C16</td>
<td>112,1(2)</td>
<td>C11–C12–H12</td>
<td>120</td>
</tr>
<tr>
<td>C1–S1–C2</td>
<td>103,6(3)</td>
<td>C11–C12–C13</td>
<td>119,9(7)</td>
</tr>
<tr>
<td>Sn1–C1–S1</td>
<td>116,5(3)</td>
<td>H12–C12–C13</td>
<td>120,1</td>
</tr>
<tr>
<td>Sn1–C1–S2</td>
<td>118,4(3)</td>
<td>C12–C13–H13</td>
<td>120,3</td>
</tr>
<tr>
<td>S1–C1–S2</td>
<td>125,0(3)</td>
<td>C12–C13–C14</td>
<td>119,4(7)</td>
</tr>
<tr>
<td>S1–C2–H2A</td>
<td>108,8</td>
<td>H13–C13–C14</td>
<td>120,3</td>
</tr>
<tr>
<td>S1–C2–H2B</td>
<td>108,7</td>
<td>C13–C14–H14</td>
<td>119,9</td>
</tr>
<tr>
<td>S1–C2–C3</td>
<td>113,9(4)</td>
<td>C13–C14–C15</td>
<td>120,2(6)</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>107,7</td>
<td>H14–C14–C15</td>
<td>119,9</td>
</tr>
<tr>
<td>H2A–C2–C3</td>
<td>108,7</td>
<td>C10–C15–C14</td>
<td>121,1(6)</td>
</tr>
<tr>
<td>H2B–C2–C3</td>
<td>108,8</td>
<td>C10–C15–H15</td>
<td>119,5</td>
</tr>
</tbody>
</table>
Продовження додатку 60

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1–C3–C2</td>
<td>177,2(7)</td>
<td>C14–C15–H15</td>
<td>119,4</td>
</tr>
<tr>
<td>Sn1–C4–C5</td>
<td>120,2(4)</td>
<td>Sn1–C16–C17</td>
<td>122,8(4)</td>
</tr>
<tr>
<td>Sn1–C4–C9</td>
<td>122,0(4)</td>
<td>Sn1–C16–C21</td>
<td>120,9(4)</td>
</tr>
<tr>
<td>C5–C4–C9</td>
<td>117,7(5)</td>
<td>C17–C16–C21</td>
<td>116,3(5)</td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>119,8</td>
<td>C16–C17–H17</td>
<td>119,3</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>120,4(6)</td>
<td>C16–C17–C18</td>
<td>121,5(7)</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>119,8</td>
<td>H17–C17–C18</td>
<td>119,2</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>120</td>
<td>C17–C18–H18</td>
<td>119,6</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>119,9(6)</td>
<td>C17–C18–C19</td>
<td>120,8(8)</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>120</td>
<td>H18–C18–C19</td>
<td>119,6</td>
</tr>
<tr>
<td>C6–C7–H7</td>
<td>119,8</td>
<td>C18–C19–H19</td>
<td>119,9</td>
</tr>
<tr>
<td>C6–C7–C8</td>
<td>120,4(7)</td>
<td>C18–C18–C20</td>
<td>120,0(7)</td>
</tr>
<tr>
<td>H7–C7–C8</td>
<td>119,8</td>
<td>H19–C19–C20</td>
<td>120,1</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>120,1</td>
<td>C19–C20–H20</td>
<td>120,2</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>119,8(7)</td>
<td>C19–C20–C21</td>
<td>119,5(6)</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>120,1</td>
<td>H20–C20–C21</td>
<td>120,2</td>
</tr>
<tr>
<td>C4–C9–C8</td>
<td>121,6(6)</td>
<td>C16–C21–C20</td>
<td>121,9(6)</td>
</tr>
<tr>
<td>C4–C9–H9</td>
<td>119,1</td>
<td>C16–C21–H21</td>
<td>119</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>119,3</td>
<td>C20–C21–H21</td>
<td>119,1</td>
</tr>
<tr>
<td>Sn1–C10–C11</td>
<td>120,8(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Результати РСД сполуки 2.7 г

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker Kappa APEX II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C_{29}H_{28}SnS_{2}</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>559,36</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Мо Ka)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Моноклінна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>P2₁</td>
</tr>
<tr>
<td>a</td>
<td>9,9286(11) Å</td>
</tr>
<tr>
<td>b</td>
<td>46,750(6) Å</td>
</tr>
<tr>
<td>c</td>
<td>11,9521(15) Å</td>
</tr>
<tr>
<td>a</td>
<td>90 °</td>
</tr>
<tr>
<td>$β$</td>
<td>109,700(4) °</td>
</tr>
<tr>
<td>$γ$</td>
<td>90 °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, V</td>
<td>5223,0(11) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>8</td>
</tr>
<tr>
<td>Густина, $ρ$</td>
<td>1,423 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, $μ$</td>
<td>1,153 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>2272</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,12х0,08х0,08 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Пурпурний білок</td>
</tr>
<tr>
<td>Межі кута $θ$</td>
<td>0,87–24,81 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-11 ≤ h ≤ 11; -54 ≤ k ≤ 54; -14 ≤ l ≤ 14</td>
</tr>
<tr>
<td>Зібрані відображения/унікальні</td>
<td>54631/16759</td>
</tr>
<tr>
<td>Дані/степені обмеження/параметри</td>
<td>16759/238/1210</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,119</td>
</tr>
<tr>
<td>Кінцеві R індекси [$I > 2σ(I)$]</td>
<td>$R = 0,0696; wR = 0,1728$</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,0743; wR = 0,1772$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>3,75 та -1,703 еА⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 2.7 г

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–C2</td>
<td>1,41(2)</td>
<td>C10–C11</td>
<td>1,34(2)</td>
<td>C21–H21A</td>
<td>0,98</td>
</tr>
<tr>
<td>C1–C6</td>
<td>1,37(2)</td>
<td>C11–C12</td>
<td>1,41(2)</td>
<td>C21–H21B</td>
<td>0,98</td>
</tr>
<tr>
<td>C1–Sn1</td>
<td>2,116(9)</td>
<td>C11–C14</td>
<td>1,52(2)</td>
<td>C21–H21C</td>
<td>0,98</td>
</tr>
<tr>
<td>C2–H2</td>
<td>0,95</td>
<td>C12–H12</td>
<td>0,95</td>
<td>C22–Sn1</td>
<td>2,15(1)</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,39(2)</td>
<td>C12–C13</td>
<td>1,34(1)</td>
<td>C22–S1</td>
<td>1,62(1)</td>
</tr>
<tr>
<td>C3–H3</td>
<td>0,95</td>
<td>C13–H13</td>
<td>0,95</td>
<td>C22–S2</td>
<td>1,72(1)</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,40(2)</td>
<td>C14–H14A</td>
<td>0,98</td>
<td>C23–H23A</td>
<td>0,99</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,36(2)</td>
<td>C14–H14B</td>
<td>0,98</td>
<td>C23–H23B</td>
<td>0,99</td>
</tr>
<tr>
<td>C4–C7</td>
<td>1,49(2)</td>
<td>C14–H14C</td>
<td>0,98</td>
<td>C23–C24</td>
<td>1,49(2)</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,95</td>
<td>C15–C16</td>
<td>1,41(1)</td>
<td>C23–S2</td>
<td>1,82(2)</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,38(2)</td>
<td>C15–C20</td>
<td>1,40(2)</td>
<td>C24–C25</td>
<td>1,37(2)</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,95</td>
<td>C15–Sn1</td>
<td>2,11(1)</td>
<td>C24–C29</td>
<td>1,43(2)</td>
</tr>
<tr>
<td>C7–H7A</td>
<td>0,98</td>
<td>C16–H16</td>
<td>0,95</td>
<td>C25–H25</td>
<td>0,95</td>
</tr>
<tr>
<td>C7–H7B</td>
<td>0,98</td>
<td>C16–C17</td>
<td>1,40(2)</td>
<td>C25–C26</td>
<td>1,38(3)</td>
</tr>
<tr>
<td>C7–H7C</td>
<td>0,98</td>
<td>C17–H17</td>
<td>0,95</td>
<td>C26–H26</td>
<td>0,95</td>
</tr>
<tr>
<td>C8–C9</td>
<td>1,37(2)</td>
<td>C17–C18</td>
<td>1,32(2)</td>
<td>C26–C27</td>
<td>1,34(3)</td>
</tr>
<tr>
<td>C8–C13</td>
<td>1,41(2)</td>
<td>C18–C19</td>
<td>1,39(1)</td>
<td>C27–H27</td>
<td>0,95</td>
</tr>
<tr>
<td>C8–Sn1</td>
<td>2,13(1)</td>
<td>C18–C21</td>
<td>1,55(2)</td>
<td>C27–C28</td>
<td>1,34(2)</td>
</tr>
<tr>
<td>C9–H9</td>
<td>0,95</td>
<td>C19–H19</td>
<td>0,95</td>
<td>C28–H28</td>
<td>0,95</td>
</tr>
<tr>
<td>C9–C10</td>
<td>1,37(2)</td>
<td>C19–C20</td>
<td>1,37(2)</td>
<td>C28–C29</td>
<td>1,35(3)</td>
</tr>
<tr>
<td>C10–H10</td>
<td>0,95</td>
<td>C20–H20</td>
<td>0,95</td>
<td>C29–H29</td>
<td>0,95</td>
</tr>
</tbody>
</table>
Значення кутів між зв’язками в структурі сполуки 2.7 g:

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2–C1–C6</td>
<td>115(1)</td>
<td>H16–C16–C17</td>
<td>120</td>
</tr>
<tr>
<td>C2–C1–Sn1</td>
<td>123,3(8)</td>
<td>C16–C17–H17</td>
<td>119</td>
</tr>
<tr>
<td>C6–C1–Sn1</td>
<td>121,9(8)</td>
<td>C16–C17–C18</td>
<td>123(1)</td>
</tr>
<tr>
<td>C1–C2–H2</td>
<td>119</td>
<td>H17–C17–C18</td>
<td>119</td>
</tr>
<tr>
<td>C1–C2–C3</td>
<td>122(1)</td>
<td>C17–C18–C19</td>
<td>120(1)</td>
</tr>
<tr>
<td>H2–C2–C3</td>
<td>119</td>
<td>C17–C18–C21</td>
<td>119(1)</td>
</tr>
<tr>
<td>C2–C3–H3</td>
<td>120</td>
<td>C19–C18–C21</td>
<td>121(1)</td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>120(1)</td>
<td>C18–C19–H19</td>
<td>121</td>
</tr>
<tr>
<td>H3–C3–C4</td>
<td>120</td>
<td>C18–C19–C20</td>
<td>119(1)</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>119(1)</td>
<td>H19–C19–C20</td>
<td>120</td>
</tr>
<tr>
<td>C3–C4–C7</td>
<td>120(1)</td>
<td>C15–C20–C19</td>
<td>123(1)</td>
</tr>
<tr>
<td>C5–C4–C7</td>
<td>121(1)</td>
<td>C15–C20–H20</td>
<td>119</td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>120</td>
<td>C19–C20–H20</td>
<td>119</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>120(1)</td>
<td>C18–C21–H21A</td>
<td>109</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>120</td>
<td>C18–C21–H21B</td>
<td>109</td>
</tr>
<tr>
<td>C1–C6–C5</td>
<td>125(1)</td>
<td>C18–C21–H21C</td>
<td>110</td>
</tr>
<tr>
<td>C1–C6–H6</td>
<td>118</td>
<td>H21A–C21–H21B</td>
<td>109</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>118</td>
<td>H21A–C21–H21C</td>
<td>110</td>
</tr>
<tr>
<td>C4–C7–H7A</td>
<td>110</td>
<td>H21B–C21–H21C</td>
<td>109</td>
</tr>
<tr>
<td>C4–C7–H7B</td>
<td>110</td>
<td>Sn1–C22–S1</td>
<td>120,7(6)</td>
</tr>
<tr>
<td>C4–C7–H7C</td>
<td>109</td>
<td>Sn1–C22–S2</td>
<td>113,6(5)</td>
</tr>
<tr>
<td>H7A–C7–H7B</td>
<td>109</td>
<td>S1–C22–S2</td>
<td>125,7(6)</td>
</tr>
<tr>
<td>H7A–C7–H7C</td>
<td>109</td>
<td>H23A–C23–H23B</td>
<td>108</td>
</tr>
<tr>
<td>H7B–C7–H7C</td>
<td>109</td>
<td>H23A–C23–C24</td>
<td>109</td>
</tr>
<tr>
<td>C9–C8–C13</td>
<td>117(1)</td>
<td>H23A–C23–S2</td>
<td>110</td>
</tr>
<tr>
<td>C9–C8–Sn1</td>
<td>120,9(8)</td>
<td>H23B–C23–C24</td>
<td>110</td>
</tr>
<tr>
<td>C13–C8–Sn1</td>
<td>121,7(8)</td>
<td>H23B–C23–S2</td>
<td>110</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>120</td>
<td>C24–C23–S2</td>
<td>110(1)</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>120(1)</td>
<td>C23–C24–C25</td>
<td>122(1)</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>120</td>
<td>C23–C24–C29</td>
<td>122(1)</td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>118</td>
<td>C25–C24–C29</td>
<td>116(1)</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>123(1)</td>
<td>C24–C25–H25</td>
<td>120</td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>118</td>
<td>C24–C25–C26</td>
<td>119(2)</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>116(1)</td>
<td>H25–C25–C26</td>
<td>120</td>
</tr>
<tr>
<td>C10–C11–C14</td>
<td>123(1)</td>
<td>C25–C26–H26</td>
<td>119</td>
</tr>
<tr>
<td>C12–C11–C14</td>
<td>121(1)</td>
<td>C25–C26–C27</td>
<td>121(2)</td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>119</td>
<td>H26–C26–C27</td>
<td>120</td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>121(1)</td>
<td>C26–C27–H27</td>
<td>119</td>
</tr>
<tr>
<td>H12–C12–C13</td>
<td>119</td>
<td>C26–C27–C28</td>
<td>123(2)</td>
</tr>
<tr>
<td>C8–C13–C12</td>
<td>121(1)</td>
<td>H27–C27–C28</td>
<td>119</td>
</tr>
<tr>
<td>C8–C13–H13</td>
<td>120</td>
<td>C27–C28–H28</td>
<td>122</td>
</tr>
<tr>
<td>C12–C13–H13</td>
<td>120</td>
<td>C27–C28–C29</td>
<td>117(2)</td>
</tr>
<tr>
<td>C11–C14–H14A</td>
<td>109</td>
<td>H28–C28–C29</td>
<td>122</td>
</tr>
<tr>
<td>C11–C14–H14B</td>
<td>109</td>
<td>C24–C29–C28</td>
<td>124(2)</td>
</tr>
<tr>
<td>C11–C14–H14C</td>
<td>109</td>
<td>C24–C29–H29</td>
<td>118</td>
</tr>
<tr>
<td>H14A–C14–H14B</td>
<td>110</td>
<td>C28–C29–H29</td>
<td>118</td>
</tr>
<tr>
<td>H14A–C14–H14C</td>
<td>109</td>
<td>C1–Sn1–C8</td>
<td>111,6(4)</td>
</tr>
<tr>
<td>H14B–C14–H14C</td>
<td>110</td>
<td>C1–Sn1–C15</td>
<td>110,3(4)</td>
</tr>
<tr>
<td>C16–C15–C20</td>
<td>116(1)</td>
<td>C1–Sn1–C22</td>
<td>107,5(4)</td>
</tr>
<tr>
<td>C16–C15–Sn1</td>
<td>120,6(8)</td>
<td>C8–Sn1–C15</td>
<td>107,5(4)</td>
</tr>
<tr>
<td>C20–C15–Sn1</td>
<td>123,3(8)</td>
<td>C8–Sn1–C22</td>
<td>107,8(4)</td>
</tr>
<tr>
<td>C15–C16–H16</td>
<td>120</td>
<td>C15–Sn1–C22</td>
<td>112,2(4)</td>
</tr>
<tr>
<td>C15–C16–C17</td>
<td>119(1)</td>
<td>C22–S2–C23</td>
<td>104,3(7)</td>
</tr>
</tbody>
</table>
Результати РСД сполуки **2.7 h**

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker AXS SMART APEX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C<sub>3</sub>0H<sub>3</sub>SnS<sub>2</sub></td>
</tr>
<tr>
<td>Молекулярна маса, (M_r)</td>
<td>573,39</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo<sub>Kα</sub>)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>P1</td>
</tr>
<tr>
<td>(a)</td>
<td>10,6394(3) Å</td>
</tr>
<tr>
<td>(b)</td>
<td>11,8339(3) Å</td>
</tr>
<tr>
<td>(c)</td>
<td>12,1149(3) Å</td>
</tr>
<tr>
<td>(α)</td>
<td>107,3670(10) °</td>
</tr>
<tr>
<td>(β)</td>
<td>106,2370(10) °</td>
</tr>
<tr>
<td>(γ)</td>
<td>91,6210(10) °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, (V)</td>
<td>1387,30(6) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, (Z)</td>
<td>2</td>
</tr>
<tr>
<td>Густина, (ρ)</td>
<td>1,373 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, (μ)</td>
<td>1,087 мм⁻¹</td>
</tr>
<tr>
<td>(F(000))</td>
<td>584</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,24x0,18x0,1 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Пурпурний блок</td>
</tr>
<tr>
<td>Межі кута (Θ)</td>
<td>2,54–25,35 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-12 ≤ (h) ≤ 12; -14 ≤ (k) ≤ 14; -14 ≤ (l) ≤ 14</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>23344/5020</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>5020/142/349</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, (F^2)</td>
<td>1,312</td>
</tr>
<tr>
<td>Кінцеві (R) індекси [(I>2σ(I))]</td>
<td>(R = 0,0422); (wR = 0,0107)</td>
</tr>
<tr>
<td>(R) індекси для всіх даних</td>
<td>(R = 0,0463); (wR = 0,1097)</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>1,119 та -0,786 eÅ⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 2.7 h

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–C2</td>
<td>1,373(8)</td>
<td>C11–C12</td>
<td>1,38(1)</td>
<td>C21–H21C</td>
<td>0,98</td>
</tr>
<tr>
<td>C1–C6</td>
<td>1,378(7)</td>
<td>C11–C14</td>
<td>1,51(1)</td>
<td>C22–S1</td>
<td>1,622(5)</td>
</tr>
<tr>
<td>C1–Sn1</td>
<td>2,129(4)</td>
<td>C12–H12</td>
<td>0,949</td>
<td>C22–S2</td>
<td>1,703(6)</td>
</tr>
<tr>
<td>C2–H2</td>
<td>0,95</td>
<td>C12–C13</td>
<td>1,378(8)</td>
<td>C22–Sn1</td>
<td>2,204(5)</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,389(7)</td>
<td>C13–H13</td>
<td>0,95</td>
<td>C24–H24A</td>
<td>0,979</td>
</tr>
<tr>
<td>C3–H3</td>
<td>0,949</td>
<td>C14–H14A</td>
<td>0,981</td>
<td>C24–H24B</td>
<td>0,98</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,366(9)</td>
<td>C14–H14B</td>
<td>0,98</td>
<td>C24–H24C</td>
<td>0,98</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,37(1)</td>
<td>C14–H14C</td>
<td>0,98</td>
<td>C24–C23</td>
<td>1,535(7)</td>
</tr>
<tr>
<td>C4–C7</td>
<td>1,512(7)</td>
<td>C15–C16</td>
<td>1,386(7)</td>
<td>S2–C23</td>
<td>1,838(6)</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,95</td>
<td>C15–C20</td>
<td>1,390(6)</td>
<td>C23–H23</td>
<td>0,999</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,371(7)</td>
<td>C15–Sn1</td>
<td>2,137(5)</td>
<td>C23–C25</td>
<td>1,504(9)</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,95</td>
<td>C16–H16</td>
<td>0,95</td>
<td>C25–C26</td>
<td>1,38(2)</td>
</tr>
<tr>
<td>C7–H7A</td>
<td>0,981</td>
<td>C16–C17</td>
<td>1,391(9)</td>
<td>C25–C30</td>
<td>1,39(2)</td>
</tr>
<tr>
<td>C7–H7B</td>
<td>0,979</td>
<td>C17–H17</td>
<td>0,95</td>
<td>C26–H26</td>
<td>0,95</td>
</tr>
<tr>
<td>C7–H7C</td>
<td>0,979</td>
<td>C17–C18</td>
<td>1,381(7)</td>
<td>C26–C27</td>
<td>1,40(4)</td>
</tr>
<tr>
<td>C8–C9</td>
<td>1,38(1)</td>
<td>C18–C19</td>
<td>1,379(7)</td>
<td>C27–H27</td>
<td>0,95</td>
</tr>
<tr>
<td>C8–C13</td>
<td>1,387(7)</td>
<td>C18–C21</td>
<td>1,51(1)</td>
<td>C27–C28</td>
<td>1,38(3)</td>
</tr>
<tr>
<td>C8–Sn1</td>
<td>2,142(5)</td>
<td>C19–H19</td>
<td>0,95</td>
<td>C28–H28</td>
<td>0,95</td>
</tr>
<tr>
<td>C9–H9</td>
<td>0,95</td>
<td>C19–C20</td>
<td>1,377(9)</td>
<td>C28–C29</td>
<td>1,36(3)</td>
</tr>
<tr>
<td>C9–C10</td>
<td>1,37(1)</td>
<td>C20–H20</td>
<td>0,95</td>
<td>C29–H29</td>
<td>0,95</td>
</tr>
<tr>
<td>C10–H10</td>
<td>0,95</td>
<td>C21–H21A</td>
<td>0,98</td>
<td>C29–C30</td>
<td>1,40(4)</td>
</tr>
<tr>
<td>C10–C11</td>
<td>1,382(9)</td>
<td>C21–H21B</td>
<td>0,98</td>
<td>C30–H30</td>
<td>0,95</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2–C1–C6</td>
<td>116,3(5)</td>
<td>H17–C17–C18</td>
<td>119,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2–C1–Sn1</td>
<td>122,6(4)</td>
<td>C17–C18–C19</td>
<td>117,7(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6–C1–Sn1</td>
<td>121,1(4)</td>
<td>C17–C18–C21</td>
<td>120,9(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1–C2–H2</td>
<td>119,3</td>
<td>C19–C18–C21</td>
<td>121,4(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1–C2–C3</td>
<td>121,5(6)</td>
<td>C18–C19–H19</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2–C2–C3</td>
<td>119,2</td>
<td>C18–C19–C20</td>
<td>122,0(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2–C3–H3</td>
<td>119,2</td>
<td>H19–C19–C20</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>121,6(6)</td>
<td>C15–C20–C19</td>
<td>120,7(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3–C3–C4</td>
<td>119,2</td>
<td>C15–C20–H20</td>
<td>119,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>116,7(6)</td>
<td>C19–C20–H20</td>
<td>119,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3–C4–C7</td>
<td>121,5(6)</td>
<td>C18–C21–H21A</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5–C4–C7</td>
<td>121,7(6)</td>
<td>C18–C21–H21B</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>119</td>
<td>C18–C21–H21C</td>
<td>109,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>122,0(6)</td>
<td>H21A–C21–H21B</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>119</td>
<td>H21A–C21–H21C</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1–C6–C5</td>
<td>121,9(6)</td>
<td>H21B–C21–H21C</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1–C6–H6</td>
<td>119</td>
<td>S1–C22–S2</td>
<td>128,9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>119,1</td>
<td>S1–C22–Sn1</td>
<td>120,8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4–C7–H7A</td>
<td>109,4</td>
<td>S2–C22–Sn1</td>
<td>110,2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4–C7–H7B</td>
<td>109,5</td>
<td>H24A–C24–H24B</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4–C7–H7C</td>
<td>109,5</td>
<td>H24A–C24–H24C</td>
<td>109,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7A–C7–H7B</td>
<td>109,4</td>
<td>H24A–C24–C23</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7A–C7–H7C</td>
<td>109,5</td>
<td>H24B–C24–H24C</td>
<td>109,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7B–C7–H7C</td>
<td>109,5</td>
<td>H24B–C24–C23</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9–C8–C13</td>
<td>118,1(5)</td>
<td>H24C–C24–C23</td>
<td>109,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9–C8–Sn1</td>
<td>123,0(4)</td>
<td>C22–S2–C23</td>
<td>107,1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13–C8–Sn1</td>
<td>118,9(4)</td>
<td>C1–Sn1–C8</td>
<td>113,3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>119,7</td>
<td>C1–Sn1–C15</td>
<td>110,3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>120,8(6)</td>
<td>C1–Sn1–C22</td>
<td>106,1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>119,6</td>
<td>C8–Sn1–C15</td>
<td>107,9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>119,3</td>
<td>C8–Sn1–C22</td>
<td>109,7(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>121,6(6)</td>
<td>C15–Sn1–C22</td>
<td>109,5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>119,1</td>
<td>C24–C23–S2</td>
<td>109,4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>117,5(6)</td>
<td>C24–C23–H23</td>
<td>108,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10–C11–C14</td>
<td>120,3(6)</td>
<td>C24–C23–C25</td>
<td>115,6(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12–C11–C14</td>
<td>122,2(6)</td>
<td>S2–C23–H23</td>
<td>108,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>119,3</td>
<td>S2–C23–C25</td>
<td>106,6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>121,4(5)</td>
<td>H23–C23–C25</td>
<td>108,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12–C12–C13</td>
<td>119,2</td>
<td>C23–C25–C26</td>
<td>125(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8–C13–C12</td>
<td>120,6(5)</td>
<td>C23–C25–C30</td>
<td>116(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8–C13–H13</td>
<td>119,7</td>
<td>C26–C25–C30</td>
<td>119(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12–C13–H13</td>
<td>119,7</td>
<td>C25–C26–H26</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11–C14–H14A</td>
<td>109,5</td>
<td>C25–C26–C27</td>
<td>120(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11–C14–H14B</td>
<td>109,5</td>
<td>H26–C26–C27</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11–C14–H14C</td>
<td>109,5</td>
<td>C26–C27–H27</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14A–C14–H14B</td>
<td>109,5</td>
<td>C26–C27–C28</td>
<td>120(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14A–C14–H14C</td>
<td>109,4</td>
<td>H27–C27–C28</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14B–C14–H14C</td>
<td>109,5</td>
<td>C27–C28–H28</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16–C15–C20</td>
<td>117,4(5)</td>
<td>C27–C28–C29</td>
<td>121(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16–C15–Sn1</td>
<td>119,7(4)</td>
<td>H28–C28–C29</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20–C15–Sn1</td>
<td>122,8(4)</td>
<td>C28–C9–H29</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15–C16–H16</td>
<td>119,3</td>
<td>C28–C28–C30</td>
<td>119(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15–C16–C17</td>
<td>121,4(5)</td>
<td>H29–C29–C30</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H16–C16–C17</td>
<td>119,3</td>
<td>C25–C30–C29</td>
<td>121(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16–C17–H17</td>
<td>119,7</td>
<td>C25–C30–H30</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16–C17–C18</td>
<td>120,7(6)</td>
<td>C29–C30–H30</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Додаток 67. 1H ЯМР спектр сполуки 2.7 і

Додаток 68. 13С{1H} ЯМР спектр сполуки 2.7 і
Додаток 69. ^{119}Sn\{^1H\} ЯМР спектр сполуки 2.7 i

Додаток 70. ^1H ЯМР спектр сполуки 2.7 j
Додаток 71. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 j

Додаток 72. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.7 j
Результати РСД сполуки 2.7 і

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker AXS SMART APEX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C_{37}H_{30}Sn_{2}S_{2}</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>776,11</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (MoKα)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Тригональна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>Р3</td>
</tr>
<tr>
<td>a</td>
<td>31,8036(7) Å</td>
</tr>
<tr>
<td>b</td>
<td>31,8036(7) Å</td>
</tr>
<tr>
<td>c</td>
<td>10,9295(5) Å</td>
</tr>
<tr>
<td>a</td>
<td>90 °</td>
</tr>
<tr>
<td>$β$</td>
<td>90 °</td>
</tr>
<tr>
<td>$γ$</td>
<td>120 °</td>
</tr>
<tr>
<td>Об’єм елементарної комірки, V</td>
<td>9573,8(5) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>12</td>
</tr>
<tr>
<td>Густина, $ρ$</td>
<td>1,615 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт аборбції, $μ$</td>
<td>1,721 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>4608</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,2x0,2x0,2 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Рожевий куб</td>
</tr>
<tr>
<td>Межі кута $Θ$</td>
<td>5,13–28,27 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-42 ≤ h ≤ 42; -29 ≤ k ≤ 42; -14 ≤ l ≤ 14</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>54260/5256</td>
</tr>
<tr>
<td>Дані/ступені обмеження/параметри</td>
<td>5256/18/283</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,017</td>
</tr>
<tr>
<td>Кінцеві R індекси [</td>
<td>I>2$σ(I)$]</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,0488; wR = 0,0695</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,86 та -1,368 eÅ⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 2.7 і

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn1–C1</td>
<td>2,161(5)</td>
<td>C5–C6</td>
<td>1,381(4)</td>
<td>C13–H13</td>
<td>0,951</td>
</tr>
<tr>
<td>Sn1–C2</td>
<td>2,132(3)</td>
<td>C6–H6</td>
<td>0,95</td>
<td>C14–C15</td>
<td>1,394(3)</td>
</tr>
<tr>
<td>Sn1–C8</td>
<td>2,128(2)</td>
<td>C6–C7</td>
<td>1,387(6)</td>
<td>C14–C19</td>
<td>1,397(4)</td>
</tr>
<tr>
<td>Sn1–C14</td>
<td>2,134(3)</td>
<td>C7–H7</td>
<td>0,95</td>
<td>C15–H15</td>
<td>0,951</td>
</tr>
<tr>
<td>Sn1–S1</td>
<td>2,530(2)</td>
<td>C8–C9</td>
<td>1,396(4)</td>
<td>C15–C16</td>
<td>1,384(4)</td>
</tr>
<tr>
<td>C1–S1</td>
<td>1,714(6)</td>
<td>C8–C13</td>
<td>1,391(5)</td>
<td>C16–H16</td>
<td>0,951</td>
</tr>
<tr>
<td>C1–S2</td>
<td>1,631(6)</td>
<td>C9–H9</td>
<td>0,951</td>
<td>C16–C17</td>
<td>1,376(5)</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,397(3)</td>
<td>C9–C10</td>
<td>1,387(3)</td>
<td>C17–H17</td>
<td>0,95</td>
</tr>
<tr>
<td>C2–C7</td>
<td>1,395(5)</td>
<td>C10–H10</td>
<td>0,949</td>
<td>C17–C18</td>
<td>1,375(4)</td>
</tr>
<tr>
<td>C3–H3</td>
<td>0,948</td>
<td>C10–C11</td>
<td>1,373(5)</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,389(5)</td>
<td>C11–H11</td>
<td>0,95</td>
<td>C18–C19</td>
<td>1,396(5)</td>
</tr>
<tr>
<td>C4–H4</td>
<td>0,951</td>
<td>C11–C12</td>
<td>1,379(5)</td>
<td>C19–H19</td>
<td>0,95</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,374(6)</td>
<td>C12–H12</td>
<td>0,95</td>
<td>Sn1–S2</td>
<td>3,247</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,95</td>
<td>C12–C13</td>
<td>1,383(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки 2.7 і

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–Sn1–C2</td>
<td>107,6(2)</td>
<td>C8–C9–H9</td>
<td>119,9</td>
</tr>
<tr>
<td>C1–Sn1–C8</td>
<td>103,4(2)</td>
<td>C8–C9–C10</td>
<td>120,3(3)</td>
</tr>
<tr>
<td>C1–Sn1–C14</td>
<td>110,1(2)</td>
<td>H9–C9–C10</td>
<td>119,8</td>
</tr>
<tr>
<td>C2–Sn1–C8</td>
<td>113,4(1)</td>
<td>C9–C10–H10</td>
<td>119,8</td>
</tr>
<tr>
<td>C2–Sn1–C14</td>
<td>110,0(1)</td>
<td>C9–C10–C11</td>
<td>120,4(3)</td>
</tr>
<tr>
<td>C2–Sn1–S1</td>
<td>114,07(8)</td>
<td>H10–C10–C11</td>
<td>119,8</td>
</tr>
<tr>
<td>C8–Sn1–C14</td>
<td>112,0(1)</td>
<td>C10–C11–H11</td>
<td>120</td>
</tr>
<tr>
<td>C8–Sn1–S1</td>
<td>112,92(8)</td>
<td>C10–C11–C12</td>
<td>120,1(3)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C14–Sn1–S1</td>
<td>92,7(1)</td>
<td>H11–C11–C12</td>
<td>119,8</td>
</tr>
<tr>
<td>Sn1–C1–S1</td>
<td>117,4(3)</td>
<td>C11–C12–H12</td>
<td>120,1</td>
</tr>
<tr>
<td>Sn1–C1–S2</td>
<td>119,3(3)</td>
<td>C11–C12–C13</td>
<td>119,8(3)</td>
</tr>
<tr>
<td>S1–C1–S2</td>
<td>123,3(4)</td>
<td>H12–C12–C13</td>
<td>120,1</td>
</tr>
<tr>
<td>C1–S1–Sn1</td>
<td>99,9(2)</td>
<td>C8–C13–C12</td>
<td>121,1(3)</td>
</tr>
<tr>
<td>Sn1–C2–C3</td>
<td>120,4(2)</td>
<td>C8–C13–H13</td>
<td>119,5</td>
</tr>
<tr>
<td>Sn1–C2–C7</td>
<td>121,1(2)</td>
<td>C12–C13–H13</td>
<td>119,5</td>
</tr>
<tr>
<td>C3–C2–C7</td>
<td>118,5(2)</td>
<td>Sn1–C14–C15</td>
<td>120,6(2)</td>
</tr>
<tr>
<td>C2–C3–H3</td>
<td>119,9</td>
<td>Sn1–C14–C19</td>
<td>121,5(2)</td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>120,3(3)</td>
<td>C15–C17–C19</td>
<td>117,9(2)</td>
</tr>
<tr>
<td>H3–C3–C4</td>
<td>119,8</td>
<td>C14–C15–H15</td>
<td>119,4</td>
</tr>
<tr>
<td>C3–C4–H4</td>
<td>119,7</td>
<td>C14–C15–C16</td>
<td>121,2(3)</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>120,6(3)</td>
<td>H15–C15–C16</td>
<td>119,5</td>
</tr>
<tr>
<td>H4–C4–C5</td>
<td>119,7</td>
<td>C15–C16–H16</td>
<td>120,1</td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>120,2</td>
<td>C15–C16–C17</td>
<td>120,0(3)</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>119,7(3)</td>
<td>H16–C16–C17</td>
<td>119,9</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>120,2</td>
<td>C16–C17–H17</td>
<td>119,7</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>119,8</td>
<td>C16–C17–C18</td>
<td>120,4(3)</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>120,5(3)</td>
<td>H17–C17–C18</td>
<td>119,8</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>119,7</td>
<td>C17–C18–H18</td>
<td>120,2</td>
</tr>
<tr>
<td>C2–C7–C6</td>
<td>120,4(3)</td>
<td>C17–C18–C19</td>
<td>119,7(3)</td>
</tr>
<tr>
<td>C2–C7–H7</td>
<td>119,7</td>
<td>H18–C18–C19</td>
<td>120,1</td>
</tr>
<tr>
<td>C6–C7–H7</td>
<td>119,9</td>
<td>C14–C19–C18</td>
<td>120,8(3)</td>
</tr>
<tr>
<td>Sn1–C8–C9</td>
<td>120,8(2)</td>
<td>C14–C19–H19</td>
<td>119,6</td>
</tr>
<tr>
<td>Sn1–C8–C13</td>
<td>120,9(2)</td>
<td>C18–C19–H19</td>
<td>119,6</td>
</tr>
<tr>
<td>C9–C8–C13</td>
<td>118,3(3)</td>
<td>S1–Sn1–S2</td>
<td>59,75</td>
</tr>
</tbody>
</table>
Результати РСД сполуки 2.7 j

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker Kappa APEX II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C\textsubscript{43}H\textsubscript{42}Sn\textsubscript{2}S\textsubscript{2}</td>
</tr>
<tr>
<td>Молекулярна маса, (M_r)</td>
<td>860,33</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) К</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo\textsubscript{Kα})</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Моноклінна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>P2\textsubscript{1}/c</td>
</tr>
<tr>
<td>(a)</td>
<td>10,7591(4) Å</td>
</tr>
<tr>
<td>(b)</td>
<td>16,4867(5) Å</td>
</tr>
<tr>
<td>(c)</td>
<td>11,6250(4) Å</td>
</tr>
<tr>
<td>(α)</td>
<td>90 °</td>
</tr>
<tr>
<td>(β)</td>
<td>105,298(2) °</td>
</tr>
<tr>
<td>(γ)</td>
<td>90 °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, (V)</td>
<td>1989,00(12) Å3</td>
</tr>
<tr>
<td>Число молекул в комірці, (Z)</td>
<td>2</td>
</tr>
<tr>
<td>Густина, (ρ)</td>
<td>1,436 г/см3</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, (μ)</td>
<td>1,388 мм-1</td>
</tr>
<tr>
<td>(F(000))</td>
<td>864</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,18x0,16x0,04 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Безбарвна пластинка</td>
</tr>
<tr>
<td>Межі кута (Θ)</td>
<td>1,96–24,8 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-12 ≤ (h) ≤ 12; -19 ≤ (k) ≤ 19; -13 ≤ (l) ≤ 13</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>27998/3393</td>
</tr>
<tr>
<td>Дані/ступені обмеження/параметри</td>
<td>3393/16/230</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, (F^2)</td>
<td>1,247</td>
</tr>
<tr>
<td>Кінцеві (R) індекси [(I \geq 2σ(I))]</td>
<td>(R = 0,0264; \ wR = 0,0818)</td>
</tr>
<tr>
<td>(R) індекси для всіх даних</td>
<td>(R = 0,0444; \ wR = 0,1142)</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,704 та -0,85 еÅ-3</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки \textbf{2.7 j}

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–C2</td>
<td>1,398(6)</td>
<td>C8–Sn1</td>
<td>2,131(4)</td>
<td>C16–C17</td>
<td>1,367(7)</td>
</tr>
<tr>
<td>C1–C6</td>
<td>1,397(7)</td>
<td>C9–H9</td>
<td>0,949</td>
<td>C17–H17</td>
<td>0,95</td>
</tr>
<tr>
<td>C1–Sn1</td>
<td>2,127(3)</td>
<td>C9–C10</td>
<td>1,383(7)</td>
<td>C17–C18</td>
<td>1,390(6)</td>
</tr>
<tr>
<td>C2–H2</td>
<td>0,95</td>
<td>C10–H10</td>
<td>0,95</td>
<td>C18–C19</td>
<td>1,381(7)</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,389(6)</td>
<td>C10–C11</td>
<td>1,386(7)</td>
<td>C18–C21</td>
<td>1,513(7)</td>
</tr>
<tr>
<td>C3–H3</td>
<td>0,951</td>
<td>C11–C12</td>
<td>1,379(6)</td>
<td>C19–H19</td>
<td>0,95</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,395(7)</td>
<td>C11–C14</td>
<td>1,513(7)</td>
<td>C19–C20</td>
<td>1,385(6)</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,385(7)</td>
<td>C12–H12</td>
<td>0,95</td>
<td>C20–H20</td>
<td>0,95</td>
</tr>
<tr>
<td>C4–C7</td>
<td>1,509(6)</td>
<td>C12–C13</td>
<td>1,392(6)</td>
<td>C21–H21A</td>
<td>0,98</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,951</td>
<td>C13–H13</td>
<td>0,95</td>
<td>C21–H21B</td>
<td>0,982</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,386(6)</td>
<td>C14–H14A</td>
<td>0,981</td>
<td>C21–H21C</td>
<td>0,979</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,951</td>
<td>C14–H14B</td>
<td>0,98</td>
<td>Sn1–C22</td>
<td>2,19(1)</td>
</tr>
<tr>
<td>C7–H7A</td>
<td>0,979</td>
<td>C14–H14C</td>
<td>0,979</td>
<td>Sn1–S1</td>
<td>2,551(3)</td>
</tr>
<tr>
<td>C7–H7B</td>
<td>0,981</td>
<td>C15–C16</td>
<td>1,389(6)</td>
<td>C22–S1</td>
<td>1,655(9)</td>
</tr>
<tr>
<td>C7–H7C</td>
<td>0,98</td>
<td>C15–C20</td>
<td>1,376(5)</td>
<td>C22–S2</td>
<td>1,620(9)</td>
</tr>
<tr>
<td>C8–C9</td>
<td>1,405(6)</td>
<td>C15–Sn1</td>
<td>2,138(3)</td>
<td>Sn1–S2</td>
<td>3,227</td>
</tr>
<tr>
<td>C8–C13</td>
<td>1,382(6)</td>
<td>C16–H16</td>
<td>0,95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки \textbf{2.7 j}

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2–C1–C6</td>
<td>117,5(4)</td>
<td>C11–C14–H14B</td>
<td>109,5</td>
</tr>
<tr>
<td>C2–C1–Sn1</td>
<td>120,6(3)</td>
<td>C11–C14–H14C</td>
<td>109,5</td>
</tr>
<tr>
<td>C6–C1–Sn1</td>
<td>121,2(3)</td>
<td>H14A–C14–H14B</td>
<td>109,4</td>
</tr>
<tr>
<td>C1–C2–H2</td>
<td>119,5</td>
<td>H14A–C14–H14C</td>
<td>109,5</td>
</tr>
<tr>
<td>C1–C2–C3</td>
<td>120,7(4)</td>
<td>H14B–C14–H14C</td>
<td>109,5</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H2–C2–C3</td>
<td>119,8</td>
<td>C16–C15–C20</td>
<td>117,3(4)</td>
</tr>
<tr>
<td>C2–C3–H3</td>
<td>119,2</td>
<td>C16–C15–Sn1</td>
<td>123,2(3)</td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>121,6(4)</td>
<td>C20–C15–Sn1</td>
<td>119,4(3)</td>
</tr>
<tr>
<td>H3–C3–C4</td>
<td>119,3</td>
<td>C15–C16–H16</td>
<td>119,5</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>117,6(4)</td>
<td>C15–C16–C17</td>
<td>121,1(4)</td>
</tr>
<tr>
<td>C3–C4–C7</td>
<td>121,3(4)</td>
<td>H16–C17–C17</td>
<td>119,5</td>
</tr>
<tr>
<td>C5–C4–C7</td>
<td>121,1(4)</td>
<td>C16–C17–H17</td>
<td>119,2</td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>119,3</td>
<td>C16–C17–C18</td>
<td>121,7(5)</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>121,3(4)</td>
<td>H17–C17–C18</td>
<td>119,1</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>119,4</td>
<td>C17–C18–C19</td>
<td>117,4(4)</td>
</tr>
<tr>
<td>C1–C6–C5</td>
<td>121,3(4)</td>
<td>C17–C18–C21</td>
<td>122,6(5)</td>
</tr>
<tr>
<td>C1–C6–H6</td>
<td>119,3</td>
<td>C19–C18–C21</td>
<td>120,1(4)</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>119,4</td>
<td>C18–C19–H19</td>
<td>119,7</td>
</tr>
<tr>
<td>C4–C7–H7A</td>
<td>109,5</td>
<td>C18–C19–C20</td>
<td>120,7(4)</td>
</tr>
<tr>
<td>C4–C7–H7B</td>
<td>109,5</td>
<td>H19–C19–C20</td>
<td>119,6</td>
</tr>
<tr>
<td>C4–C7–H7C</td>
<td>109,5</td>
<td>C15–C20–C19</td>
<td>121,8(4)</td>
</tr>
<tr>
<td>H7A–C7–H7B</td>
<td>109,5</td>
<td>C15–C20–H20</td>
<td>119,1</td>
</tr>
<tr>
<td>H7A–C7–H7C</td>
<td>109,5</td>
<td>C19–C20–H20</td>
<td>119,1</td>
</tr>
<tr>
<td>H7B–C7–H7C</td>
<td>109,5</td>
<td>C18–C21–H21A</td>
<td>109,5</td>
</tr>
<tr>
<td>C9–C8–C13</td>
<td>117,9(4)</td>
<td>C18–C21–H21B</td>
<td>109,5</td>
</tr>
<tr>
<td>C9–C8–Sn1</td>
<td>123,6(3)</td>
<td>C18–C21–H21C</td>
<td>109,5</td>
</tr>
<tr>
<td>C13–C8–Sn1</td>
<td>118,5(3)</td>
<td>H21A–C21–H21B</td>
<td>109,4</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>120,1</td>
<td>H21A–C21–H21C</td>
<td>109,5</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>119,9(4)</td>
<td>H21B–C21–H21C</td>
<td>109,4</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>120</td>
<td>C1–Sn1–C8</td>
<td>115,8(1)</td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>119</td>
<td>C1–Sn1–C15</td>
<td>104,7(1)</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>121,9(5)</td>
<td>C1–Sn1–C22</td>
<td>107,6(3)</td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>119,1</td>
<td>C1–Sn1–S1</td>
<td>116,9(1)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>118,1(4)</td>
<td>C8–Sn1–C15</td>
<td>109,0(1)</td>
</tr>
<tr>
<td>C10–C11–C14</td>
<td>121,1(4)</td>
<td>C8–Sn1–C22</td>
<td>108,6(3)</td>
</tr>
<tr>
<td>C12–C11–C14</td>
<td>120,8(4)</td>
<td>C8–Sn1–S1</td>
<td>113,6(1)</td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>119,6</td>
<td>C15–Sn1–C22</td>
<td>111,0(3)</td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>120,8(4)</td>
<td>C15–Sn1–S1</td>
<td>93,5(1)</td>
</tr>
<tr>
<td>H12–C12–C13</td>
<td>119,6</td>
<td>Sn1–C22–S1</td>
<td>116,1(5)</td>
</tr>
<tr>
<td>C8–C13–C12</td>
<td>121,4(4)</td>
<td>Sn1–C22–S2</td>
<td>117,5(5)</td>
</tr>
<tr>
<td>C8–C13–H13</td>
<td>119,3</td>
<td>S1–C22–S2</td>
<td>126,3(6)</td>
</tr>
<tr>
<td>C12–C13–H13</td>
<td>119,3</td>
<td>C22–S1–Sn1</td>
<td>98,4(3)</td>
</tr>
<tr>
<td>C11–C14–H14A</td>
<td>109,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Додаток 79. 1H ЯМР спектр сполуки 2.10
Додаток 80. $^{119}\text{Sn}^{1\text{H}}$ ЯМР спектр сполуки 2.10

Додаток 81

Результати РСД сполуки 2.10

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker kappa APEX-II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>$C_{59}H_{51}Sn_3S_3$</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>1212,25</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo$_{\text{K}}\alpha$)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>$\bar{P}\bar{1}$</td>
</tr>
<tr>
<td>a</td>
<td>10,0018(5) Å</td>
</tr>
<tr>
<td>b</td>
<td>13,0978(8) Å</td>
</tr>
<tr>
<td>c</td>
<td>20,4583(12) Å</td>
</tr>
<tr>
<td>α</td>
<td>87,130(3) °</td>
</tr>
<tr>
<td>β</td>
<td>87,053(3) °</td>
</tr>
<tr>
<td>γ</td>
<td>79,071(3) °</td>
</tr>
</tbody>
</table>
Продовження додатку 81

<table>
<thead>
<tr>
<th>Об'єм елементарної комірки, V</th>
<th>2625,8(3) Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число молекул в комірці, Z</td>
<td>2</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,533 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>1,572 мм⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1206</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,1х0,16х0,08 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Рожева пластинка</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>2,94–26,37 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-12 ≤ h ≤ 12; -16 ≤ k ≤ 16; -25 ≤ l ≤ 25</td>
</tr>
<tr>
<td>Зібрани відображення/унікальні</td>
<td>50057/10698</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>10698/213/620</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F²</td>
<td>1,035</td>
</tr>
<tr>
<td>Кінцеві R індекси [I>2σ(I)]</td>
<td>R = 0,0547; wR = 0,1292</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>R = 0,0967; wR = 0,1531</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>3,033 та -1,561 eÅ⁻³</td>
</tr>
</tbody>
</table>

Додаток 82

Значення довжин зв’язків у структурі сполуки 2.10

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn1–C1</td>
<td>2,161(6)</td>
<td>C18–C19</td>
<td>1,36(1)</td>
<td>C39–C44</td>
<td>1,38(1)</td>
</tr>
<tr>
<td>Sn1–C3</td>
<td>2,149(8)</td>
<td>C19–H19</td>
<td>0,95</td>
<td>C40–H40</td>
<td>0,95</td>
</tr>
<tr>
<td>Sn1–C9</td>
<td>2,126(6)</td>
<td>C19–C20</td>
<td>1,38(1)</td>
<td>C40–C41</td>
<td>1,39(1)</td>
</tr>
<tr>
<td>Sn1–C15</td>
<td>2,149(6)</td>
<td>C20–H20</td>
<td>0,95</td>
<td>C41–H41</td>
<td>0,95</td>
</tr>
<tr>
<td>Sn3–S3</td>
<td>2,426(2)</td>
<td>C21–C22</td>
<td>1,39(1)</td>
<td>C41–C42</td>
<td>1,38(1)</td>
</tr>
<tr>
<td>Sn3–C39</td>
<td>2,131(8)</td>
<td>C21–C26</td>
<td>1,39(1)</td>
<td>C42–C43</td>
<td>1,37(2)</td>
</tr>
<tr>
<td>Sn3–C46</td>
<td>2,134(6)</td>
<td>C21–Sn2</td>
<td>2,134(7)</td>
<td>C42–C45</td>
<td>1,51(2)</td>
</tr>
<tr>
<td>Sn3–C53</td>
<td>2,132(6)</td>
<td>C22–H22</td>
<td>0,95</td>
<td>C43–H43</td>
<td>0,95</td>
</tr>
<tr>
<td>S1–C1</td>
<td>1,591(8)</td>
<td>C22–C23</td>
<td>1,41(1)</td>
<td>C43–C44</td>
<td>1,40(1)</td>
</tr>
<tr>
<td>S2–C1</td>
<td>1,735(8)</td>
<td>C23–H23</td>
<td>0,95</td>
<td>C44–H44</td>
<td>0,951</td>
</tr>
<tr>
<td>Зв’язок</td>
<td>Довжина, Å</td>
<td>Зв’язок</td>
<td>Довжина, Å</td>
<td>Зв’язок</td>
<td>Довжина, Å</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>S2–C2</td>
<td>1,688(7)</td>
<td>C23–C24</td>
<td>1,37(2)</td>
<td>C45–H45A</td>
<td>0,98</td>
</tr>
<tr>
<td>S3–C2</td>
<td>1,949(7)</td>
<td>C24–H24</td>
<td>0,95</td>
<td>C45–H45B</td>
<td>0,98</td>
</tr>
<tr>
<td>C2–Sn2</td>
<td>2,222(7)</td>
<td>C24–C25</td>
<td>1,33(2)</td>
<td>C45–H45C</td>
<td>0,98</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,38(1)</td>
<td>C25–H25</td>
<td>0,95</td>
<td>C46–C47</td>
<td>1,39(1)</td>
</tr>
<tr>
<td>C3–C8</td>
<td>1,39(1)</td>
<td>C25–C26</td>
<td>1,37(1)</td>
<td>C46–C51</td>
<td>1,39(1)</td>
</tr>
<tr>
<td>C4–H4</td>
<td>0,95</td>
<td>C26–H26</td>
<td>0,95</td>
<td>C47–H47</td>
<td>0,95</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,36(1)</td>
<td>C27–C28</td>
<td>1,41(1)</td>
<td>C47–C48</td>
<td>1,39(1)</td>
</tr>
<tr>
<td>C5–H5</td>
<td>0,95</td>
<td>C27–C32</td>
<td>1,37(1)</td>
<td>C48–H48</td>
<td>0,95</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,37(2)</td>
<td>C27–Sn2</td>
<td>2,133(7)</td>
<td>C48–C49</td>
<td>1,37(1)</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,95</td>
<td>C28–H28</td>
<td>0,95</td>
<td>C49–C50</td>
<td>1,38(1)</td>
</tr>
<tr>
<td>C6–C7</td>
<td>1,37(1)</td>
<td>C28–C29</td>
<td>1,37(1)</td>
<td>C49–C52</td>
<td>1,51(1)</td>
</tr>
<tr>
<td>C7–H7</td>
<td>0,949</td>
<td>C29–H29</td>
<td>0,95</td>
<td>C50–H50</td>
<td>0,95</td>
</tr>
<tr>
<td>C7–C8</td>
<td>1,38(1)</td>
<td>C29–C30</td>
<td>1,38(1)</td>
<td>C50–C51</td>
<td>1,37(1)</td>
</tr>
<tr>
<td>C8–H8</td>
<td>0,951</td>
<td>C30–H30</td>
<td>0,95</td>
<td>C51–H51</td>
<td>0,949</td>
</tr>
<tr>
<td>C9–C10</td>
<td>1,369(9)</td>
<td>C30–C31</td>
<td>1,33(1)</td>
<td>C52–H52A</td>
<td>0,98</td>
</tr>
<tr>
<td>C9–C14</td>
<td>1,382(9)</td>
<td>C31–H31</td>
<td>0,95</td>
<td>C52–H52B</td>
<td>0,98</td>
</tr>
<tr>
<td>C10–H10</td>
<td>0,95</td>
<td>C31–C32</td>
<td>1,40(1)</td>
<td>C52–H52C</td>
<td>0,98</td>
</tr>
<tr>
<td>C10–C11</td>
<td>1,38(1)</td>
<td>C32–H32</td>
<td>0,948</td>
<td>C53–C54</td>
<td>1,38(1)</td>
</tr>
<tr>
<td>C11–H11</td>
<td>0,949</td>
<td>Sn2–C33</td>
<td>2,18(2)</td>
<td>C53–C58</td>
<td>1,38(1)</td>
</tr>
<tr>
<td>C11–C12</td>
<td>1,39(1)</td>
<td>C33–C34</td>
<td>1,39(2)</td>
<td>C54–H54</td>
<td>0,95</td>
</tr>
<tr>
<td>C12–H12</td>
<td>0,949</td>
<td>C33–C38</td>
<td>1,39(3)</td>
<td>C54–C55</td>
<td>1,40(1)</td>
</tr>
<tr>
<td>C12–C13</td>
<td>1,36(1)</td>
<td>C34–H34</td>
<td>0,95</td>
<td>C55–H55</td>
<td>0,949</td>
</tr>
<tr>
<td>C13–H13</td>
<td>0,95</td>
<td>C34–C35</td>
<td>1,39(3)</td>
<td>C55–C56</td>
<td>1,35(1)</td>
</tr>
<tr>
<td>C13–C14</td>
<td>1,36(1)</td>
<td>C35–H35</td>
<td>0,95</td>
<td>C56–C57</td>
<td>1,37(1)</td>
</tr>
<tr>
<td>C14–H14</td>
<td>0,951</td>
<td>C35–C36</td>
<td>1,39(3)</td>
<td>C56–C59</td>
<td>1,54(1)</td>
</tr>
<tr>
<td>C15–C16</td>
<td>1,384(9)</td>
<td>C36–H36</td>
<td>0,95</td>
<td>C57–H57</td>
<td>0,95</td>
</tr>
<tr>
<td>C15–C20</td>
<td>1,396(9)</td>
<td>C36–C37</td>
<td>1,39(2)</td>
<td>C57–C58</td>
<td>1,39(1)</td>
</tr>
<tr>
<td>Зв’язок</td>
<td>Довжина, Å</td>
<td>Зв’язок</td>
<td>Довжина, Å</td>
<td>Зв’язок</td>
<td>Довжина, Å</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>C16–H16</td>
<td>0,95</td>
<td>C37–H37</td>
<td>0,95</td>
<td>C58–H58</td>
<td>0,95</td>
</tr>
<tr>
<td>C16–C17</td>
<td>1,36(1)</td>
<td>C37–C38</td>
<td>1,39(2)</td>
<td>C59–H59A</td>
<td>0,98</td>
</tr>
<tr>
<td>C17–H17</td>
<td>0,95</td>
<td>C38–H38</td>
<td>0,95</td>
<td>C59–H59B</td>
<td>0,98</td>
</tr>
<tr>
<td>C17–C18</td>
<td>1,41(1)</td>
<td>C39–C40</td>
<td>1,39(1)</td>
<td>C59–H59C</td>
<td>0,98</td>
</tr>
<tr>
<td>C18–H18</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Додаток 83

Значення кутів між зв’язками в структурі сполуки 2.10

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–Sn1–C3</td>
<td>106,6(3)</td>
<td>H30–C30–C31</td>
<td>120</td>
</tr>
<tr>
<td>C1–Sn1–C9</td>
<td>108,8(3)</td>
<td>C30–C31–H31</td>
<td>120</td>
</tr>
<tr>
<td>C1–Sn1–C15</td>
<td>108,4(2)</td>
<td>C30–C31–C32</td>
<td>120(1)</td>
</tr>
<tr>
<td>C3–Sn1–C9</td>
<td>111,4(3)</td>
<td>H31–C31–C32</td>
<td>120</td>
</tr>
<tr>
<td>C3–Sn1–C15</td>
<td>109,2(3)</td>
<td>C27–C32–C31</td>
<td>121,8(9)</td>
</tr>
<tr>
<td>C9–Sn1–C15</td>
<td>112,2(2)</td>
<td>C27–C32–H32</td>
<td>119,1</td>
</tr>
<tr>
<td>S3–Sn3–C39</td>
<td>106,4(2)</td>
<td>C31–C32–H32</td>
<td>119,1</td>
</tr>
<tr>
<td>S3–Sn3–C46</td>
<td>105,9(2)</td>
<td>C2–Sn2–C21</td>
<td>113,0(3)</td>
</tr>
<tr>
<td>C39–Sn3–C46</td>
<td>109,7(3)</td>
<td>C2–Sn2–C33</td>
<td>97,3(5)</td>
</tr>
<tr>
<td>C39–Sn3–C53</td>
<td>110,2(3)</td>
<td>C21–Sn2–C27</td>
<td>115,0(3)</td>
</tr>
<tr>
<td>C46–Sn3–C53</td>
<td>113,2(3)</td>
<td>C21–Sn2–C33</td>
<td>105,6(3)</td>
</tr>
<tr>
<td>C1–S2–C2</td>
<td>107,6(4)</td>
<td>C27–Sn2–C33</td>
<td>106,0(5)</td>
</tr>
<tr>
<td>Sn3–S3–C2</td>
<td>98,2(2)</td>
<td>Sn2–C33–C34</td>
<td>122(1)</td>
</tr>
<tr>
<td>Sn1–C1–S1</td>
<td>120,8(4)</td>
<td>Sn2–C33–C38</td>
<td>118(1)</td>
</tr>
<tr>
<td>Sn1–C1–S2</td>
<td>112,8(4)</td>
<td>C34–C33–C38</td>
<td>120(2)</td>
</tr>
<tr>
<td>S1–C1–S2</td>
<td>126,4(4)</td>
<td>C33–C34–H34</td>
<td>120</td>
</tr>
<tr>
<td>S2–C2–S3</td>
<td>113,5(4)</td>
<td>C33–C34–C35</td>
<td>120(2)</td>
</tr>
<tr>
<td>S2–C2–Sn2</td>
<td>120,1(4)</td>
<td>H34–C34–C35</td>
<td>120</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>S3–C2–Sn2</td>
<td>105,8(3)</td>
<td>C34–C35–H35</td>
<td>120</td>
</tr>
<tr>
<td>Sn1–C3–C4</td>
<td>119,2(5)</td>
<td>C34–C35–C36</td>
<td>120(2)</td>
</tr>
<tr>
<td>Sn1–C3–C8</td>
<td>122,5(5)</td>
<td>H35–C35–C36</td>
<td>120</td>
</tr>
<tr>
<td>C4–C3–C8</td>
<td>118,1(7)</td>
<td>C35–C36–H36</td>
<td>120</td>
</tr>
<tr>
<td>C3–C4–H4</td>
<td>119,5</td>
<td>C35–C36–C37</td>
<td>120(2)</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>121,0(8)</td>
<td>H36–C36–C37</td>
<td>120</td>
</tr>
<tr>
<td>H4–C4–C5</td>
<td>119,5</td>
<td>C36–C37–H37</td>
<td>120</td>
</tr>
<tr>
<td>C4–C5–H5</td>
<td>119,8</td>
<td>C36–C37–C38</td>
<td>120(2)</td>
</tr>
<tr>
<td>C4–C5–C6</td>
<td>120,3(9)</td>
<td>H37–C37–C38</td>
<td>120</td>
</tr>
<tr>
<td>H5–C5–C6</td>
<td>120</td>
<td>C33–C38–C37</td>
<td>120(2)</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>120</td>
<td>C33–C38–H38</td>
<td>120</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>120,5(9)</td>
<td>C37–C38–H38</td>
<td>120</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>120</td>
<td>Sn3–C39–C40</td>
<td>120,6(6)</td>
</tr>
<tr>
<td>C6–C7–H7</td>
<td>120,4</td>
<td>Sn3–C39–C44</td>
<td>121,6(6)</td>
</tr>
<tr>
<td>C6–C7–C8</td>
<td>119,1(9)</td>
<td>C40–C39–C44</td>
<td>117,7(7)</td>
</tr>
<tr>
<td>H7–C7–C8</td>
<td>120,5</td>
<td>C39–C40–H40</td>
<td>119,7</td>
</tr>
<tr>
<td>C3–C8–C7</td>
<td>121,0(8)</td>
<td>C39–C40–C41</td>
<td>120,6(8)</td>
</tr>
<tr>
<td>C3–C8–H8</td>
<td>119,5</td>
<td>H40–C40–C41</td>
<td>119,7</td>
</tr>
<tr>
<td>S3–Sn3–C53</td>
<td>111,1(2)</td>
<td>C2–Sn2–C27</td>
<td>117,3(3)</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>119,5</td>
<td>C40–C41–H41</td>
<td>119</td>
</tr>
<tr>
<td>Sn1–C9–C10</td>
<td>121,2(5)</td>
<td>C40–C41–C42</td>
<td>121(1)</td>
</tr>
<tr>
<td>Sn1–C9–C14</td>
<td>121,4(5)</td>
<td>H41–C41–C42</td>
<td>119</td>
</tr>
<tr>
<td>C10–C9–C14</td>
<td>117,4(6)</td>
<td>C41–C42–C43</td>
<td>118(1)</td>
</tr>
<tr>
<td>C9–C10–H10</td>
<td>119,2</td>
<td>C41–C42–C45</td>
<td>121(1)</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>121,7(7)</td>
<td>C43–C42–C45</td>
<td>121(1)</td>
</tr>
<tr>
<td>H10–C10–C11</td>
<td>119,1</td>
<td>C42–C43–H43</td>
<td>119,9</td>
</tr>
<tr>
<td>C10–C11–H11</td>
<td>120,6</td>
<td>C42–C43–C44</td>
<td>120,3(9)</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>118,9(7)</td>
<td>H43–C43–C44</td>
<td>119,8</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>120,5</td>
<td>C39–C44–C43</td>
<td>121,6(8)</td>
</tr>
<tr>
<td>C11–C12–H12</td>
<td>120,1</td>
<td>C39–C44–H44</td>
<td>119,1</td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>120,0(7)</td>
<td>C43–C44–H44</td>
<td>119,3</td>
</tr>
<tr>
<td>H12–C12–C13</td>
<td>120</td>
<td>C42–C45–H45A</td>
<td>109</td>
</tr>
<tr>
<td>C12–C13–H13</td>
<td>120,1</td>
<td>C42–C45–H45B</td>
<td>109</td>
</tr>
<tr>
<td>C12–C13–C14</td>
<td>119,9(8)</td>
<td>C42–C45–H45C</td>
<td>109</td>
</tr>
<tr>
<td>H13–C13–C14</td>
<td>120</td>
<td>H45A–C45–H45B</td>
<td>110</td>
</tr>
<tr>
<td>C9–C14–C13</td>
<td>122,2(7)</td>
<td>H45A–C45–H45C</td>
<td>109</td>
</tr>
<tr>
<td>C9–C14–H14</td>
<td>118,9</td>
<td>H45B–C45–H45C</td>
<td>109</td>
</tr>
<tr>
<td>C13–C14–H14</td>
<td>119</td>
<td>Sn3–C46–C47</td>
<td>123,1(5)</td>
</tr>
<tr>
<td>Sn1–C15–C16</td>
<td>119,3(5)</td>
<td>Sn3–C46–C51</td>
<td>119,3(5)</td>
</tr>
<tr>
<td>Sn1–C15–C20</td>
<td>121,3(5)</td>
<td>C47–C46–C51</td>
<td>117,6(7)</td>
</tr>
<tr>
<td>C16–C15–C20</td>
<td>119,4(6)</td>
<td>C46–C47–H47</td>
<td>119,8</td>
</tr>
<tr>
<td>C15–C16–H16</td>
<td>119,4</td>
<td>C46–C47–C48</td>
<td>120,3(7)</td>
</tr>
<tr>
<td>C15–C16–C17</td>
<td>121,0(6)</td>
<td>H47–C47–C48</td>
<td>119,8</td>
</tr>
<tr>
<td>H16–C16–C17</td>
<td>119,5</td>
<td>C47–C48–H48</td>
<td>119,5</td>
</tr>
<tr>
<td>C16–C17–H17</td>
<td>120</td>
<td>C47–C48–C49</td>
<td>121,0(8)</td>
</tr>
<tr>
<td>C16–C17–C18</td>
<td>119,9(7)</td>
<td>H48–C48–C49</td>
<td>119,5</td>
</tr>
<tr>
<td>H17–C17–C18</td>
<td>120,1</td>
<td>C48–C49–C50</td>
<td>119,1(7)</td>
</tr>
<tr>
<td>C17–C18–H18</td>
<td>120,3</td>
<td>C48–C49–C52</td>
<td>122,3(7)</td>
</tr>
<tr>
<td>C17–C18–C19</td>
<td>119,3(7)</td>
<td>C50–C49–C52</td>
<td>118,6(7)</td>
</tr>
<tr>
<td>H18–C18–C19</td>
<td>120,4</td>
<td>C49–C50–H50</td>
<td>119,8</td>
</tr>
<tr>
<td>C18–C19–H19</td>
<td>119,4</td>
<td>C49–C50–C51</td>
<td>120,4(7)</td>
</tr>
<tr>
<td>C18–C19–C20</td>
<td>121,2(7)</td>
<td>H50–C50–C51</td>
<td>119,8</td>
</tr>
<tr>
<td>H19–C19–C20</td>
<td>119,4</td>
<td>C46–C51–C50</td>
<td>121,6(7)</td>
</tr>
<tr>
<td>C15–C20–C19</td>
<td>119,3(6)</td>
<td>C46–C51–H51</td>
<td>119,2</td>
</tr>
<tr>
<td>C15–C20–H20</td>
<td>120,3</td>
<td>C50–C51–H51</td>
<td>119,2</td>
</tr>
<tr>
<td>C19–C20–H20</td>
<td>120,4</td>
<td>C49–C52–H52A</td>
<td>109,5</td>
</tr>
<tr>
<td>Осідок</td>
<td>Значення, °</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22–C21–C26</td>
<td>117,3(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22–C21–Sn2</td>
<td>122,2(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26–C21–Sn2</td>
<td>120,5(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21–C22–H22</td>
<td>120,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21–C22–C23</td>
<td>119,4(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22–C22–C23</td>
<td>120,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22–C23–H23</td>
<td>119,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22–C23–C24</td>
<td>120,7(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23–C23–C24</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23–C24–H24</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23–C24–C25</td>
<td>120(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24–C24–C25</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24–C25–H25</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24–C25–C26</td>
<td>121,1(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H25–C25–C26</td>
<td>119,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21–C26–C25</td>
<td>121,6(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21–C26–H26</td>
<td>119,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25–C26–H26</td>
<td>119,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28–C27–C32</td>
<td>116,9(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28–C27–Sn2</td>
<td>124,7(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32–C27–Sn2</td>
<td>118,3(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27–C28–H28</td>
<td>119,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27–C28–C29</td>
<td>120,8(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28–C28–C29</td>
<td>119,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28–C29–H29</td>
<td>119,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28–C29–C30</td>
<td>120,2(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H29–C29–C30</td>
<td>119,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29–C30–H30</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29–C30–C31</td>
<td>120(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Додаток 84. 1H ЯМР спектр сполуки 2.13

Додаток 85. 13C{1H} ЯМР спектр сполуки 2.13
Додаток 86. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.13

Додаток 87. ^1H ЯМР спектр сполуки 2.14
Додаток 88. $^{13}\text{C}\{^1\text{H}\}$ ЯМР спектр сполуки 2.14

Додаток 89. $^{119}\text{Sn}\{^1\text{H}\}$ ЯМР спектр сполуки 2.14
Додаток 90. 1H ЯМР спекти реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 а

Додаток 91. 31P{1H} ЯМР спекти реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 а
Додаток 92. 1Н ЯМР спекtraitи реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 b

Додаток 93. 31P1Н ЯМР спекtraitи реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 b
Додаток 94. 1H ЯМР спекти реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 с

Додаток 95. 31P1H ЯМР спекти реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 с
Додаток 96. 1Н ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 d

Додаток 97. 31P 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 d
Додаток 98. 1Н ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 г

Додаток 99. 31P1Н ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 г
Додаток 100. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 f

Додаток 101. 31P/1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.4 f
Додаток 102. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації VA за участю сполуки 2.4 а

Додаток 103. 31P1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації VA за участю сполуки 2.4 а
Додаток 104. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 б

Додаток 105. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 с
Додаток 106. $^{31}\text{P}^{1\text{H}}$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 с

Додаток 107. ^1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 д
Додаток 108. $^{31}\text{P}[^1\text{H}]$ ЯМР спекти реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 d

Додаток 109. ^1H ЯМР спекти реакційних сумішей отриманих у ході полімеризації ВА за участю сполуки 2.4 e
Додаток 10. 31P/1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації BA за участю сполуки 2.4 e

Додаток 11. 1H ЯМР спектри реакційних сумішей отриманих у ході полімеризації BA за участю сполуки 2.4 f
Додаток 112. 31P {1H} ЯМР спектри реакційних сумішей отриманих у ході полімеризації VA за участю сполуки 2.4 f

Додаток 113. 1H ЯМР спектри реакційних сумішей отриманих у ході кополімеризації St та VA за участю сполуки 2.4 c
Додаток 114. $^{119}\text{Sn}^{(1}\text{H})$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації St за участю сполуки 2.7 а

Додаток 115. $^{119}\text{Sn}^{(1}\text{H})$ ЯМР спектри реакційних сумішей отриманих у ході полімеризації MA за участю сполуки 2.7 а
Додаток 116. 1H ЯМР спектр сполуки 4.5

Додаток 117. 13C1H ЯМР спектр сполуки 4.5
Додаток 118. 1H ЯМР спектр сполуки 4.6

Додаток 119. 13C$[^1]$Н ЯМР спектр сполуки 4.6
Додаток 120. \(^1H\) ЯМР спектр сполуки 4.7

Додаток 121. \(^{13}C\)\(^{(1H)}\) ЯМР спектр сполуки 4.7
Додаток 122. 1H ЯМР спектр сполуки 4.8

Додаток 123. 13C{1H} ЯМР спектр сполуки 4.8
Додаток 124. $^{31}\text{P}^1\text{H}$ ЯМР спектр сполуки 4.8

Додаток 125

Результати РСД сполуки 4.5

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker D8 VENTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>$\text{C}{19}\text{H}{20}\text{N}{2}\text{O}{2}$</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>308,37</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo$\text{K}\alpha$)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Орторомбічна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>$Pccn$</td>
</tr>
<tr>
<td>a</td>
<td>11,1095(5) Å</td>
</tr>
<tr>
<td>b</td>
<td>33,0187(15) Å</td>
</tr>
<tr>
<td>c</td>
<td>17,2865(7) Å</td>
</tr>
<tr>
<td>α</td>
<td>90 °</td>
</tr>
<tr>
<td>β</td>
<td>90 °</td>
</tr>
<tr>
<td>γ</td>
<td>90 °</td>
</tr>
</tbody>
</table>
Продовження додатку 125

<table>
<thead>
<tr>
<th>Показник</th>
<th>Значення</th>
</tr>
</thead>
<tbody>
<tr>
<td>Об’єм елементарної комірки, V</td>
<td>6341,1(5) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>16</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,292 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>0,085 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>2624</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,42x0,2x0,18 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Оранжевий блок</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>2,86–30,51 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>$-15 \leq h \leq 15$; $-47 \leq k \leq 47$; $-20 \leq l \leq 20$</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>231540/9675</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>9675/4/435</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,09</td>
</tr>
<tr>
<td>Кінцеві R індекси $[I>2\sigma(I)]$</td>
<td>$R = 0,048$; $wR = 0,1265$</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,0661$; $wR = 0,1435$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,334 та -0,257 еÅ⁻³</td>
</tr>
</tbody>
</table>

Додаток 126

Значення довжин зв’язків у структурі сполуки 4.5

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1–C5</td>
<td>1,376(1)</td>
<td>C3–H3A</td>
<td>0,98</td>
<td>C10–C11</td>
<td>1,424(1)</td>
</tr>
<tr>
<td>O1–C13</td>
<td>1,377(1)</td>
<td>C3–H3B</td>
<td>0,98</td>
<td>C11–H11</td>
<td>0,95</td>
</tr>
<tr>
<td>O2–C13</td>
<td>1,218(1)</td>
<td>C3–H3C</td>
<td>0,981</td>
<td>C11–C12</td>
<td>1,367(2)</td>
</tr>
<tr>
<td>N1–C2</td>
<td>1,456(2)</td>
<td>C3–C4</td>
<td>1,513(2)</td>
<td>C12–C13</td>
<td>1,459(2)</td>
</tr>
<tr>
<td>N1–C4</td>
<td>1,456(2)</td>
<td>C4–H4A</td>
<td>0,99</td>
<td>C12–C14</td>
<td>1,480(1)</td>
</tr>
<tr>
<td>N1–C7</td>
<td>1,369(1)</td>
<td>C4–H4B</td>
<td>0,99</td>
<td>C14–C15</td>
<td>1,396(2)</td>
</tr>
<tr>
<td>N2–C17</td>
<td>1,394(1)</td>
<td>C5–C6</td>
<td>1,378(1)</td>
<td>C14–C19</td>
<td>1,399(2)</td>
</tr>
<tr>
<td>N2–H2D</td>
<td>0,90(1)</td>
<td>C5–C10</td>
<td>1,398(1)</td>
<td>C15–H15</td>
<td>0,951</td>
</tr>
<tr>
<td>N2–H2C</td>
<td>0,90(1)</td>
<td>C6–H6</td>
<td>0,949</td>
<td>C15–C16</td>
<td>1,389(1)</td>
</tr>
<tr>
<td>Зв’язок</td>
<td>Довжина, Å</td>
<td>Зв’язок</td>
<td>Довжина, Å</td>
<td>Зв’язок</td>
<td>Довжина, Å</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>C1–H1A</td>
<td>0,98</td>
<td>C6–C7</td>
<td>1,408(2)</td>
<td>C16–H16</td>
<td>0,95</td>
</tr>
<tr>
<td>C1–H1B</td>
<td>0,98</td>
<td>C7–C8</td>
<td>1,427(2)</td>
<td>C16–C17</td>
<td>1,397(2)</td>
</tr>
<tr>
<td>C1–H1C</td>
<td>0,982</td>
<td>C8–H8</td>
<td>0,951</td>
<td>C17–C18</td>
<td>1,396(2)</td>
</tr>
<tr>
<td>C1–C2</td>
<td>1,515(2)</td>
<td>C8–C9</td>
<td>1,373(1)</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
<tr>
<td>C2–H2A</td>
<td>0,991</td>
<td>C9–H9</td>
<td>0,95</td>
<td>C18–C19</td>
<td>1,385(2)</td>
</tr>
<tr>
<td>C2–H2B</td>
<td>0,99</td>
<td>C9–C10</td>
<td>1,409(1)</td>
<td>C19–H19</td>
<td>0,951</td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки 4.5

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5–O1–C13</td>
<td>123,38(9)</td>
<td>N1–C7–C8</td>
<td>121,4(1)</td>
</tr>
<tr>
<td>C2–N1–C4</td>
<td>115,3(1)</td>
<td>C6–C7–C8</td>
<td>117,7(1)</td>
</tr>
<tr>
<td>C2–N1–C7</td>
<td>120,9(1)</td>
<td>C7–C8–H8</td>
<td>119,5</td>
</tr>
<tr>
<td>C4–N1–C7</td>
<td>122,9(1)</td>
<td>C7–C8–C9</td>
<td>121,1(1)</td>
</tr>
<tr>
<td>C17–N2–H2D</td>
<td>115(1)</td>
<td>H8–C8–C9</td>
<td>119,4</td>
</tr>
<tr>
<td>C17–N2–H2C</td>
<td>115(1)</td>
<td>C8–C9–H9</td>
<td>119,2</td>
</tr>
<tr>
<td>H2D–N2–H2C</td>
<td>116(1)</td>
<td>C8–C9–C10</td>
<td>121,6(1)</td>
</tr>
<tr>
<td>H1A–C1–H1B</td>
<td>109,5</td>
<td>H9–C9–C10</td>
<td>119,1</td>
</tr>
<tr>
<td>H1A–C1–H1C</td>
<td>109,5</td>
<td>C5–C10–C9</td>
<td>116,26(9)</td>
</tr>
<tr>
<td>H1A–C1–C2</td>
<td>109,5</td>
<td>C5–C10–C11</td>
<td>118,00(9)</td>
</tr>
<tr>
<td>H1B–C1–H1C</td>
<td>109,4</td>
<td>C9–C10–C11</td>
<td>125,6(1)</td>
</tr>
<tr>
<td>H1B–C1–C2</td>
<td>109,5</td>
<td>C10–C11–H11</td>
<td>118,8</td>
</tr>
<tr>
<td>H1C–C1–C2</td>
<td>109,4</td>
<td>C10–C11–C12</td>
<td>122,5(1)</td>
</tr>
<tr>
<td>N1–C2–C1</td>
<td>113,5(1)</td>
<td>H11–C11–C12</td>
<td>118,7</td>
</tr>
<tr>
<td>N1–C2–H2A</td>
<td>108,9</td>
<td>C11–C12–C13</td>
<td>118,4(1)</td>
</tr>
<tr>
<td>N1–C2–H2B</td>
<td>108,9</td>
<td>C11–C12–C14</td>
<td>122,2(1)</td>
</tr>
<tr>
<td>C1–C2–H2A</td>
<td>108,9</td>
<td>C13–C12–C14</td>
<td>119,4(1)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C1–C2–H2B</td>
<td>108,9</td>
<td>O1–C13–O2</td>
<td>115,0(1)</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>107,7</td>
<td>O1–C13–C12</td>
<td>117,7(1)</td>
</tr>
<tr>
<td>H3A–C3–H3B</td>
<td>109,5</td>
<td>O2–C13–C12</td>
<td>127,2(1)</td>
</tr>
<tr>
<td>H3A–C3–H3C</td>
<td>109,5</td>
<td>C12–C14–C15</td>
<td>122,5(1)</td>
</tr>
<tr>
<td>H3A–C3–C4</td>
<td>109,4</td>
<td>C12–C14–C19</td>
<td>120,2(1)</td>
</tr>
<tr>
<td>H3B–C3–H3C</td>
<td>109,6</td>
<td>C15–C14–C19</td>
<td>117,2(1)</td>
</tr>
<tr>
<td>H3B–C3–C4</td>
<td>109,5</td>
<td>C14–C15–H15</td>
<td>119,1</td>
</tr>
<tr>
<td>H3C–C3–C4</td>
<td>109,4</td>
<td>C14–C15–C16</td>
<td>121,6(1)</td>
</tr>
<tr>
<td>N1–C4–C3</td>
<td>113,2(1)</td>
<td>H15–C15–C16</td>
<td>119,3</td>
</tr>
<tr>
<td>N1–C4–H4A</td>
<td>108,9</td>
<td>C15–C16–H16</td>
<td>119,7</td>
</tr>
<tr>
<td>N1–C4–H4B</td>
<td>109</td>
<td>C15–C16–C17</td>
<td>120,6(1)</td>
</tr>
<tr>
<td>C3–C4–H4A</td>
<td>109</td>
<td>H16–C16–C17</td>
<td>119,6</td>
</tr>
<tr>
<td>C3–C4–H4B</td>
<td>108,9</td>
<td>N2–C17–C16</td>
<td>121,2(1)</td>
</tr>
<tr>
<td>H4A–C4–H4B</td>
<td>107,7</td>
<td>N2–C17–C18</td>
<td>120,7(1)</td>
</tr>
<tr>
<td>O1–C5–C6</td>
<td>116,34(9)</td>
<td>C16–C17–C18</td>
<td>118,1(1)</td>
</tr>
<tr>
<td>O1–C5–C10</td>
<td>119,82(9)</td>
<td>C17–C18–H18</td>
<td>119,6</td>
</tr>
<tr>
<td>C6–C5–C10</td>
<td>123,8(1)</td>
<td>C17–C18–C19</td>
<td>120,8(1)</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>120,2</td>
<td>H18–C18–C19</td>
<td>119,5</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>119,5(1)</td>
<td>C14–C19–C18</td>
<td>121,6(1)</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>120,4</td>
<td>C14–C19–H19</td>
<td>119,1</td>
</tr>
<tr>
<td>N1–C7–C6</td>
<td>120,9(1)</td>
<td>C18–C19–H19</td>
<td>119,3</td>
</tr>
</tbody>
</table>
Результати РСД сполуки 4.6

<table>
<thead>
<tr>
<th>Пільговий пристрій</th>
<th>Bruker D8 VENTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C₂₂H₂₃BrN₂O₃</td>
</tr>
<tr>
<td>Молекулярна маса, (M_r)</td>
<td>443,33</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Мо(K\alpha))</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Моноклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>(P2_1/c)</td>
</tr>
<tr>
<td>(a)</td>
<td>14,9120(7) Å</td>
</tr>
<tr>
<td>(b)</td>
<td>11,3177(5) Å</td>
</tr>
<tr>
<td>(c)</td>
<td>12,0106(5) Å</td>
</tr>
<tr>
<td>(α)</td>
<td>90 °</td>
</tr>
<tr>
<td>(β)</td>
<td>94,758(2) °</td>
</tr>
<tr>
<td>(γ)</td>
<td>90 °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, (V)</td>
<td>2020,04(16) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, (Z)</td>
<td>4</td>
</tr>
<tr>
<td>Густина, (ρ)</td>
<td>1,458 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, (μ)</td>
<td>2,06 мм⁻¹</td>
</tr>
<tr>
<td>(F(000))</td>
<td>912</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,18х0,16х0,04 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Жовта пластинка</td>
</tr>
<tr>
<td>Межі кута (θ)</td>
<td>2,76–26,4 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>(-18 \leq h \leq 18; -14 \leq k \leq 14; -15 \leq l \leq 14)</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>52591/4136</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>4136/1/260</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, (F^2)</td>
<td>1,087</td>
</tr>
<tr>
<td>Кінцеві (R) індекси ([I>2σ(I)])</td>
<td>(R = 0,0476; \ wR = 0,1254)</td>
</tr>
<tr>
<td>(R) індекси для всіх даних</td>
<td>(R = 0,0721; \ wR = 0,1392)</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,639 та -0,794 еА⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 4.6

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–H1A</td>
<td>0,98</td>
<td>C6–C7</td>
<td>1,413(5)</td>
<td>C16–H16</td>
<td>0,95</td>
</tr>
<tr>
<td>C1–H1B</td>
<td>0,98</td>
<td>C7–C8</td>
<td>1,421(5)</td>
<td>C16–C17</td>
<td>1,398(5)</td>
</tr>
<tr>
<td>C1–H1C</td>
<td>0,981</td>
<td>C7–N1</td>
<td>1,371(4)</td>
<td>C17–C18</td>
<td>1,394(5)</td>
</tr>
<tr>
<td>C1–C2</td>
<td>1,506(6)</td>
<td>C8–H8</td>
<td>0,95</td>
<td>C17–N2</td>
<td>1,416(4)</td>
</tr>
<tr>
<td>C2–H2A</td>
<td>0,99</td>
<td>C8–C9</td>
<td>1,367(5)</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
<tr>
<td>C2–H2B</td>
<td>0,991</td>
<td>C9–H9</td>
<td>0,95</td>
<td>C18–C19</td>
<td>1,379(5)</td>
</tr>
<tr>
<td>C2–N1</td>
<td>1,464(5)</td>
<td>C9–C10</td>
<td>1,404(5)</td>
<td>C19–H19</td>
<td>0,95</td>
</tr>
<tr>
<td>C3–H3A</td>
<td>0,979</td>
<td>C10–C11</td>
<td>1,421(5)</td>
<td>C20–C21</td>
<td>1,521(6)</td>
</tr>
<tr>
<td>C3–H3B</td>
<td>0,98</td>
<td>C11–H11</td>
<td>0,951</td>
<td>C20–N2</td>
<td>1,345(5)</td>
</tr>
<tr>
<td>C3–H3C</td>
<td>0,98</td>
<td>C11–C12</td>
<td>1,360(5)</td>
<td>C20–O3</td>
<td>1,223(4)</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,514(6)</td>
<td>C12–C13</td>
<td>1,462(5)</td>
<td>C21–H21</td>
<td>1</td>
</tr>
<tr>
<td>C4–H4A</td>
<td>0,99</td>
<td>C12–C14</td>
<td>1,475(5)</td>
<td>C21–C22</td>
<td>1,544(5)</td>
</tr>
<tr>
<td>C4–H4B</td>
<td>0,989</td>
<td>C13–O1</td>
<td>1,370(4)</td>
<td>C21–Br1</td>
<td>1,972(4)</td>
</tr>
<tr>
<td>C4–N1</td>
<td>1,461(5)</td>
<td>C13–O2</td>
<td>1,215(4)</td>
<td>C22–H22A</td>
<td>0,981</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,380(5)</td>
<td>C14–C15</td>
<td>1,393(5)</td>
<td>C22–H22B</td>
<td>0,979</td>
</tr>
<tr>
<td>C5–C10</td>
<td>1,394(5)</td>
<td>C14–C19</td>
<td>1,405(5)</td>
<td>C22–H22C</td>
<td>0,98</td>
</tr>
<tr>
<td>C5–O1</td>
<td>1,377(4)</td>
<td>C15–H15</td>
<td>0,95</td>
<td>N2–H2</td>
<td>0,87(2)</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,949</td>
<td>C15–C16</td>
<td>1,379(5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки 4.6

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1A–C1–H1B</td>
<td>109,5</td>
<td>C11–C12–C14</td>
<td>124,0(3)</td>
</tr>
<tr>
<td>H1A–C1–H1C</td>
<td>109,5</td>
<td>C13–C12–C14</td>
<td>118,5(3)</td>
</tr>
<tr>
<td>H1A–C1–C2</td>
<td>109,5</td>
<td>C12–C13–O1</td>
<td>118,8(3)</td>
</tr>
<tr>
<td>H1B–C1–H1C</td>
<td>109,5</td>
<td>C12–C13–O2</td>
<td>126,4(3)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>H1B–C1–C2</td>
<td>109,5</td>
<td>O1–C13–O2</td>
<td>114,7(3)</td>
</tr>
<tr>
<td>H1C–C1–C2</td>
<td>109,5</td>
<td>C12–C14–C15</td>
<td>121,8(3)</td>
</tr>
<tr>
<td>C1–C2–H2A</td>
<td>108,6</td>
<td>C12–C14–C19</td>
<td>121,2(3)</td>
</tr>
<tr>
<td>C1–C2–H2B</td>
<td>108,6</td>
<td>C15–C14–C19</td>
<td>117,0(3)</td>
</tr>
<tr>
<td>C1–C2–N1</td>
<td>114,7(3)</td>
<td>C14–C15–H15</td>
<td>118,5</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>107,5</td>
<td>C14–C15–C16</td>
<td>122,9(3)</td>
</tr>
<tr>
<td>H2A–C2–N1</td>
<td>108,6</td>
<td>H15–C15–C16</td>
<td>118,5</td>
</tr>
<tr>
<td>H2B–C2–N1</td>
<td>108,6</td>
<td>C15–C16–H16</td>
<td>120,5</td>
</tr>
<tr>
<td>H3A–C3–H3B</td>
<td>109,6</td>
<td>C15–C16–C17</td>
<td>119,0(3)</td>
</tr>
<tr>
<td>H3A–C3–H3C</td>
<td>109,5</td>
<td>H16–C16–C17</td>
<td>120,5</td>
</tr>
<tr>
<td>H3A–C3–C4</td>
<td>109,4</td>
<td>C16–C17–C18</td>
<td>119,3(3)</td>
</tr>
<tr>
<td>H3B–C3–H3C</td>
<td>109,5</td>
<td>C16–C17–N2</td>
<td>122,8(3)</td>
</tr>
<tr>
<td>H3B–C3–C4</td>
<td>109,4</td>
<td>C18–C17–N2</td>
<td>117,9(3)</td>
</tr>
<tr>
<td>H3C–C3–C4</td>
<td>109,4</td>
<td>C17–C18–H18</td>
<td>119,6</td>
</tr>
<tr>
<td>C3–C4–H4A</td>
<td>108,8</td>
<td>C17–C18–C19</td>
<td>120,8(3)</td>
</tr>
<tr>
<td>C3–C4–H4B</td>
<td>108,8</td>
<td>H18–C18–C19</td>
<td>119,6</td>
</tr>
<tr>
<td>C3–C4–N1</td>
<td>113,8(3)</td>
<td>C14–C19–C18</td>
<td>120,9(3)</td>
</tr>
<tr>
<td>H4A–C4–H4B</td>
<td>107,7</td>
<td>C14–C19–H19</td>
<td>119,5</td>
</tr>
<tr>
<td>H4A–C4–N1</td>
<td>108,8</td>
<td>C18–C19–H19</td>
<td>119,5</td>
</tr>
<tr>
<td>H4B–C4–N1</td>
<td>108,8</td>
<td>C21–C20–N2</td>
<td>113,7(3)</td>
</tr>
<tr>
<td>C6–C5–C10</td>
<td>124,0(3)</td>
<td>C21–C20–O3</td>
<td>120,7(3)</td>
</tr>
<tr>
<td>C6–C5–O1</td>
<td>116,2(3)</td>
<td>N2–C20–O3</td>
<td>125,6(4)</td>
</tr>
<tr>
<td>C10–C5–O1</td>
<td>119,8(3)</td>
<td>C20–C21–H21</td>
<td>109,7</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>120,5</td>
<td>C20–C21–C22</td>
<td>114,7(3)</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>119,1(3)</td>
<td>C20–C21–Br1</td>
<td>105,2(2)</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>120,5</td>
<td>H21–C21–C22</td>
<td>109,6</td>
</tr>
<tr>
<td>C6–C7–C8</td>
<td>117,4(3)</td>
<td>H21–C21–Br1</td>
<td>109,6</td>
</tr>
<tr>
<td>C6–C7–N1</td>
<td>121,8(3)</td>
<td>C22–C21–Br1</td>
<td>107,8(2)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C8–C7–N1</td>
<td>120,8(3)</td>
<td>C21–C22–H22A</td>
<td>109,4</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>119,2</td>
<td>C21–C22–H22B</td>
<td>109,5</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>121,6(3)</td>
<td>C21–C22–H22C</td>
<td>109,4</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>119,3</td>
<td>H22A–C22–H22B</td>
<td>109,5</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>119,2</td>
<td>H22A–C22–H22C</td>
<td>109,5</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>121,6(3)</td>
<td>H22B–C22–H22C</td>
<td>109,5</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>119,3</td>
<td>C2–N1–C4</td>
<td>117,1(3)</td>
</tr>
<tr>
<td>C5–C10–C9</td>
<td>116,3(3)</td>
<td>C2–N1–C7</td>
<td>120,7(3)</td>
</tr>
<tr>
<td>C5–C10–C11</td>
<td>118,3(3)</td>
<td>C4–N1–C7</td>
<td>121,0(3)</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>125,4(3)</td>
<td>C17–N2–C20</td>
<td>128,1(3)</td>
</tr>
<tr>
<td>C10–C11–H11</td>
<td>118,6</td>
<td>C17–N2–H2</td>
<td>115(2)</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>122,7(3)</td>
<td>C20–N2–H2</td>
<td>116(2)</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>118,7</td>
<td>C5–O1–C13</td>
<td>122,6(3)</td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>117,6(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Додаток 131

Результати РСД сполуки 4.7

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker D8 VENTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C₂₅H₂₈N₂O₄S₂</td>
</tr>
<tr>
<td>Молекулярна маса, (M_r)</td>
<td>484,61</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (Mo(K\alpha))</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Моноклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>C2/c</td>
</tr>
<tr>
<td>(a)</td>
<td>27,3707(12)</td>
</tr>
<tr>
<td>(b)</td>
<td>11,1657(5)</td>
</tr>
<tr>
<td>(c)</td>
<td>16,6120(6)</td>
</tr>
</tbody>
</table>
Продовження додатку 131

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значення</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>β</td>
<td>$107,5290(10)$°</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Об’єм елементарної комірки, V</td>
<td>$4841,1(4)$ Å3</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>8</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,33 г/см3</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>0,254 мм$^{-1}$</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>2048</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,36х0,22х0,04 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Оранжева пластинка</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>2,94–27,48°</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>-35 ≤ h ≤ 35; -14 ≤ k ≤ 14; -20 ≤ l ≤ 21</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>76021/5539</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>5539/150/353</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,029</td>
</tr>
<tr>
<td>Кінцеві R інdexи [I>2σ(I)]</td>
<td>$R = 0,0577$; $wR = 0,1421$</td>
</tr>
<tr>
<td>R інdexи для всіх даних</td>
<td>$R = 0,0806$; $wR = 0,1577$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,925 та -1,12 е Å$^{-3}$</td>
</tr>
</tbody>
</table>

Додаток 132

Значення довжин зв’язків у структурі сполуки 4.7

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5–C6</td>
<td>1,382(4)</td>
<td>C16–H16</td>
<td>0,949</td>
<td>C24–C25</td>
<td>1,501(5)</td>
</tr>
<tr>
<td>C5–C10</td>
<td>1,390(3)</td>
<td>C16–C17</td>
<td>1,385(3)</td>
<td>C24–O4</td>
<td>1,456(3)</td>
</tr>
<tr>
<td>C5–O1</td>
<td>1,375(3)</td>
<td>C17–C18</td>
<td>1,389(3)</td>
<td>C25–H25A</td>
<td>0,98</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,95</td>
<td>C17–N2</td>
<td>1,410(3)</td>
<td>C25–H25B</td>
<td>0,98</td>
</tr>
<tr>
<td>C6–C7</td>
<td>1,402(4)</td>
<td>C18–H18</td>
<td>0,949</td>
<td>C25–H25C</td>
<td>0,98</td>
</tr>
<tr>
<td>C8–H8</td>
<td>0,949</td>
<td>C18–C19</td>
<td>1,375(4)</td>
<td>N2–H2</td>
<td>0,83(3)</td>
</tr>
</tbody>
</table>
Продовження додатку 132

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8–C9</td>
<td>1,371(4)</td>
<td>C19–H19</td>
<td>0,95</td>
<td>C7–N1</td>
<td>1,382(9)</td>
</tr>
<tr>
<td>C8–C7</td>
<td>1,415(4)</td>
<td>C20–C21</td>
<td>1,536(4)</td>
<td>N1–C1</td>
<td>1,46(2)</td>
</tr>
<tr>
<td>C9–H9</td>
<td>0,95</td>
<td>C20–N2</td>
<td>1,346(3)</td>
<td>N1–C3</td>
<td>1,460(9)</td>
</tr>
<tr>
<td>C9–C10</td>
<td>1,404(4)</td>
<td>C20–O3</td>
<td>1,221(3)</td>
<td>C1–H1A</td>
<td>0,99</td>
</tr>
<tr>
<td>C10–C11</td>
<td>1,418(4)</td>
<td>C21–H21</td>
<td>1,001</td>
<td>C1–H1B</td>
<td>0,99</td>
</tr>
<tr>
<td>C11–H11</td>
<td>0,95</td>
<td>C21–C22</td>
<td>1,526(3)</td>
<td>C1–C2</td>
<td>1,52(2)</td>
</tr>
<tr>
<td>C11–C12</td>
<td>1,362(3)</td>
<td>C21–S1</td>
<td>1,818(3)</td>
<td>C2–H2A</td>
<td>0,98</td>
</tr>
<tr>
<td>C12–C13</td>
<td>1,458(3)</td>
<td>C22–H22A</td>
<td>0,98</td>
<td>C2–H2B</td>
<td>0,98</td>
</tr>
<tr>
<td>C12–C14</td>
<td>1,483(4)</td>
<td>C22–H22B</td>
<td>0,98</td>
<td>C2–H2C</td>
<td>0,98</td>
</tr>
<tr>
<td>C13–O1</td>
<td>1,379(3)</td>
<td>C22–H22C</td>
<td>0,98</td>
<td>C3–H3A</td>
<td>0,989</td>
</tr>
<tr>
<td>C13–O2</td>
<td>1,210(3)</td>
<td>C23–O4</td>
<td>1,320(4)</td>
<td>C3–H3B</td>
<td>0,992</td>
</tr>
<tr>
<td>C14–C15</td>
<td>1,392(4)</td>
<td>C23–S1</td>
<td>1,741(3)</td>
<td>C3–C4</td>
<td>1,53(1)</td>
</tr>
<tr>
<td>C14–C19</td>
<td>1,397(3)</td>
<td>C23–S2</td>
<td>1,633(3)</td>
<td>C4–H4A</td>
<td>0,98</td>
</tr>
<tr>
<td>C15–H15</td>
<td>0,949</td>
<td>C24–H24A</td>
<td>0,989</td>
<td>C4–H4B</td>
<td>0,98</td>
</tr>
<tr>
<td>C15–C6</td>
<td>1,387(4)</td>
<td>C24–H24B</td>
<td>0,989</td>
<td>C4–H4C</td>
<td>0,979</td>
</tr>
</tbody>
</table>

Додаток 133

Значення кутів між зв’язками в структурі сполуки 4.7

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6–C5–C10</td>
<td>123,3(2)</td>
<td>H22A–C22–H22B</td>
<td>109,4</td>
</tr>
<tr>
<td>C6–C5–O1</td>
<td>116,8(2)</td>
<td>H22A–C22–H22C</td>
<td>109,5</td>
</tr>
<tr>
<td>C10–C5–O1</td>
<td>119,9(2)</td>
<td>H22B–C22–H22C</td>
<td>109,5</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>120,3</td>
<td>O4–C23–S1</td>
<td>112,5(2)</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>119,1(2)</td>
<td>O4–C23–S2</td>
<td>127,1(2)</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>120,5</td>
<td>S1–C23–S2</td>
<td>120,3(2)</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>119,4</td>
<td>H24A–C24–H24B</td>
<td>108,6</td>
</tr>
<tr>
<td>H8–C8–C7</td>
<td>119,5</td>
<td>H24A–C24–C25</td>
<td>110,2</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C9–C8–C7</td>
<td>121,1(2)</td>
<td>H24A–C24–O4</td>
<td>110,3</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>119,5</td>
<td>H24B–C24–C25</td>
<td>110,3</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>121,1(2)</td>
<td>H24B–C24–O4</td>
<td>110,3</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>119,4</td>
<td>C25–C24–O4</td>
<td>107,1(2)</td>
</tr>
<tr>
<td>C5–C10–C9</td>
<td>117,1(2)</td>
<td>C24–C25–H25A</td>
<td>109,4</td>
</tr>
<tr>
<td>C5–C10–C11</td>
<td>118,3(2)</td>
<td>C24–C25–H25B</td>
<td>109,5</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>122,5(2)</td>
<td>H25A–C25–H25C</td>
<td>109,5</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>118,7</td>
<td>H25B–C25–H25C</td>
<td>109,4</td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>118,0(2)</td>
<td>C17–N2–C20</td>
<td>130,1(2)</td>
</tr>
<tr>
<td>C11–C12–C14</td>
<td>121,9(2)</td>
<td>C17–N2–H2</td>
<td>113(2)</td>
</tr>
<tr>
<td>C13–C12–C14</td>
<td>120,0(2)</td>
<td>C20–N2–H2</td>
<td>117(2)</td>
</tr>
<tr>
<td>C12–C13–O1</td>
<td>118,0(2)</td>
<td>C5–O1–C13</td>
<td>122,7(2)</td>
</tr>
<tr>
<td>C12–C13–O2</td>
<td>126,6(2)</td>
<td>C23–O4–C24</td>
<td>118,6(2)</td>
</tr>
<tr>
<td>O1–C13–O2</td>
<td>115,4(2)</td>
<td>C21–S1–C23</td>
<td>104,4(1)</td>
</tr>
<tr>
<td>C12–C14–C15</td>
<td>124,2(2)</td>
<td>C6–C7–C8</td>
<td>118,3(3)</td>
</tr>
<tr>
<td>C12–C14–C19</td>
<td>118,9(2)</td>
<td>C6–C7–N1</td>
<td>119,9(4)</td>
</tr>
<tr>
<td>C15–C14–C19</td>
<td>116,9(2)</td>
<td>C8–C7–N1</td>
<td>120,6(4)</td>
</tr>
<tr>
<td>C14–C15–H15</td>
<td>119</td>
<td>C7–N1–C1</td>
<td>120,6(8)</td>
</tr>
<tr>
<td>C14–C15–C16</td>
<td>121,9(2)</td>
<td>C7–N1–C3</td>
<td>124,3(6)</td>
</tr>
<tr>
<td>H15–C15–C16</td>
<td>119</td>
<td>C1–N1–C3</td>
<td>114,9(8)</td>
</tr>
<tr>
<td>C15–C16–H16</td>
<td>120</td>
<td>N1–C1–H1A</td>
<td>109</td>
</tr>
<tr>
<td>C15–C16–C17</td>
<td>120,0(2)</td>
<td>N1–C1–H1B</td>
<td>109</td>
</tr>
<tr>
<td>H16–C16–C17</td>
<td>120</td>
<td>N1–C1–C2</td>
<td>112(1)</td>
</tr>
<tr>
<td>C16–C17–C18</td>
<td>118,8(2)</td>
<td>H1A–C1–H1B</td>
<td>108</td>
</tr>
<tr>
<td>C16–C17–N2</td>
<td>125,1(2)</td>
<td>H1A–C1–C2</td>
<td>109</td>
</tr>
<tr>
<td>C18–C17–N2</td>
<td>116,1(2)</td>
<td>H1B–C1–C2</td>
<td>109</td>
</tr>
</tbody>
</table>
Продовження додатку 133

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C17–C18–H18</td>
<td>119,6</td>
<td>C1–C2–H2A</td>
<td>110</td>
</tr>
<tr>
<td>C17–C18–C19</td>
<td>120,8(2)</td>
<td>C1–C2–H2B</td>
<td>109</td>
</tr>
<tr>
<td>H18–C18–C19</td>
<td>119,6</td>
<td>C1–C2–H2C</td>
<td>109</td>
</tr>
<tr>
<td>C14–C19–C18</td>
<td>121,6(2)</td>
<td>H2A–C2–H2B</td>
<td>109</td>
</tr>
<tr>
<td>C14–C19–H19</td>
<td>119,2</td>
<td>H2A–C2–H2C</td>
<td>110</td>
</tr>
<tr>
<td>C18–C19–H19</td>
<td>119,2</td>
<td>H2B–C2–H2C</td>
<td>109</td>
</tr>
<tr>
<td>C21–C20–N2</td>
<td>111,8(2)</td>
<td>N1–C3–H3A</td>
<td>109,3</td>
</tr>
<tr>
<td>C21–C20–O3</td>
<td>123,3(2)</td>
<td>N1–C3–H3B</td>
<td>109,3</td>
</tr>
<tr>
<td>N2–C20–O3</td>
<td>124,7(2)</td>
<td>N1–C3–C4</td>
<td>111,7(6)</td>
</tr>
<tr>
<td>C20–C21–H21</td>
<td>108,8</td>
<td>H3A–C3–H3B</td>
<td>108,1</td>
</tr>
<tr>
<td>C20–C21–C22</td>
<td>109,9(2)</td>
<td>H3A–C3–C4</td>
<td>109,3</td>
</tr>
<tr>
<td>C20–C21–S1</td>
<td>113,9(2)</td>
<td>H3B–C3–C4</td>
<td>109,2</td>
</tr>
<tr>
<td>H21–C21–C22</td>
<td>108,8</td>
<td>C3–C4–H4A</td>
<td>109,4</td>
</tr>
<tr>
<td>H21–C21–S1</td>
<td>108,8</td>
<td>C3–C4–H4B</td>
<td>109,4</td>
</tr>
<tr>
<td>C22–C21–S1</td>
<td>106,5(2)</td>
<td>C3–C4–H4C</td>
<td>109,5</td>
</tr>
<tr>
<td>C21–C22–H22A</td>
<td>109,4</td>
<td>H4A–C4–H4B</td>
<td>109,3</td>
</tr>
<tr>
<td>C21–C22–H22B</td>
<td>109,5</td>
<td>H4A–C4–H4C</td>
<td>109,5</td>
</tr>
<tr>
<td>C21–C22–H22C</td>
<td>109,4</td>
<td>H4B–C4–H4C</td>
<td>109,6</td>
</tr>
</tbody>
</table>
Результати РСД сполуки 4.8

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker D8 VENTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C₃₃H₄₃N₄O₄PS₂</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>654,8</td>
</tr>
<tr>
<td>Температура</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>1,54178 Å (CuKα)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>$P\overline{1}$</td>
</tr>
<tr>
<td>a</td>
<td>7,8438(4)</td>
</tr>
<tr>
<td>b</td>
<td>10,8617(5)</td>
</tr>
<tr>
<td>c</td>
<td>20,3409(9)</td>
</tr>
<tr>
<td>α</td>
<td>98,352(3) °</td>
</tr>
<tr>
<td>β</td>
<td>90,816(3) °</td>
</tr>
<tr>
<td>γ</td>
<td>101,794(3) °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, V</td>
<td>1676,68(14) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>2</td>
</tr>
<tr>
<td>Густина, ρ</td>
<td>1,297 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, μ</td>
<td>2,233 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>696</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,16x0,08x0,06 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Безбарвна голка</td>
</tr>
<tr>
<td>Межі кута Θ</td>
<td>4,21–63,8 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>$-9 \leq h \leq 9; -12 \leq k \leq 12; -23 \leq l \leq 22$</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>17024/5473</td>
</tr>
<tr>
<td>Дани/ступені обмеження/параметри</td>
<td>5539/767/597</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,024</td>
</tr>
<tr>
<td>Кінцеві R індекси $[I>2\sigma(I)]$</td>
<td>$R = 0,0972; wR = 0,2239$</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,2329; wR = 0,2867$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,396 та -0,301 еÅ⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 4.8

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–H1A</td>
<td>0,99</td>
<td>C10–N2</td>
<td>1,487(8)</td>
<td>O4–C23</td>
<td>1,35(2)</td>
</tr>
<tr>
<td>C1–H1B</td>
<td>0,99</td>
<td>C11–P1</td>
<td>1,853(7)</td>
<td>C23–C24</td>
<td>1,35(3)</td>
</tr>
<tr>
<td>C1–C2</td>
<td>1,52(1)</td>
<td>C11–S1</td>
<td>1,638(8)</td>
<td>C23–C29</td>
<td>1,40(2)</td>
</tr>
<tr>
<td>C1–N1</td>
<td>1,506(9)</td>
<td>C11–S2</td>
<td>1,702(7)</td>
<td>C24–C25</td>
<td>1,45(2)</td>
</tr>
<tr>
<td>C2–H2A</td>
<td>0,989</td>
<td>C12–H12</td>
<td>1</td>
<td>C24–C26</td>
<td>1,45(3)</td>
</tr>
<tr>
<td>C2–H2B</td>
<td>0,99</td>
<td>C12–C13</td>
<td>1,53(1)</td>
<td>C25–H25</td>
<td>0,95</td>
</tr>
<tr>
<td>C2–C3</td>
<td>1,49(1)</td>
<td>C12–C14</td>
<td>1,53(1)</td>
<td>C26–H26</td>
<td>0,95</td>
</tr>
<tr>
<td>C3–H3A</td>
<td>0,99</td>
<td>C12–S2</td>
<td>1,804(8)</td>
<td>C26–C27</td>
<td>1,37(2)</td>
</tr>
<tr>
<td>C3–H3B</td>
<td>0,99</td>
<td>C13–H13A</td>
<td>0,98</td>
<td>C27–H27</td>
<td>0,95</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,55(1)</td>
<td>C13–H13B</td>
<td>0,98</td>
<td>C27–C28</td>
<td>1,45(4)</td>
</tr>
<tr>
<td>C4–H4A</td>
<td>0,991</td>
<td>C13–H13C</td>
<td>0,981</td>
<td>C28–C29</td>
<td>1,40(3)</td>
</tr>
<tr>
<td>C4–H4B</td>
<td>0,99</td>
<td>C14–N3</td>
<td>1,32(1)</td>
<td>C28–N4</td>
<td>1,39(4)</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1,50(1)</td>
<td>C14–O2</td>
<td>1,22(1)</td>
<td>C29–H29</td>
<td>0,95</td>
</tr>
<tr>
<td>C5–H5A</td>
<td>0,99</td>
<td>N3–C15</td>
<td>1,42(2)</td>
<td>N4–C30</td>
<td>1,55(5)</td>
</tr>
<tr>
<td>C5–H5B</td>
<td>0,99</td>
<td>N3–H3</td>
<td>0,88(6)</td>
<td>N4–C32</td>
<td>1,37(3)</td>
</tr>
<tr>
<td>C5–N1</td>
<td>1,46(1)</td>
<td>C15–C16</td>
<td>1,37(3)</td>
<td>C30–H30A</td>
<td>0,99</td>
</tr>
<tr>
<td>C6–H6A</td>
<td>0,989</td>
<td>C15–C20</td>
<td>1,37(3)</td>
<td>C30–H30B</td>
<td>0,99</td>
</tr>
<tr>
<td>C6–H6B</td>
<td>0,99</td>
<td>C16–H16</td>
<td>0,95</td>
<td>C30–C31</td>
<td>1,30(4)</td>
</tr>
<tr>
<td>C6–C7</td>
<td>1,505(9)</td>
<td>C16–C17</td>
<td>1,38(2)</td>
<td>C31–H31A</td>
<td>0,98</td>
</tr>
<tr>
<td>C6–N2</td>
<td>1,477(9)</td>
<td>C17–H17</td>
<td>0,95</td>
<td>C31–H31B</td>
<td>0,98</td>
</tr>
<tr>
<td>C7–H7A</td>
<td>0,99</td>
<td>C17–C18</td>
<td>1,39(2)</td>
<td>C31–H31C</td>
<td>0,98</td>
</tr>
<tr>
<td>C7–H7B</td>
<td>0,991</td>
<td>C18–C19</td>
<td>1,38(2)</td>
<td>C32–H32A</td>
<td>0,99</td>
</tr>
<tr>
<td>C7–C8</td>
<td>1,497(9)</td>
<td>C18–C21</td>
<td>1,49(2)</td>
<td>C32–H32B</td>
<td>0,99</td>
</tr>
<tr>
<td>C8–H8A</td>
<td>0,99</td>
<td>C19–H19</td>
<td>0,95</td>
<td>C32–C33</td>
<td>1,41(2)</td>
</tr>
<tr>
<td>C8–H8B</td>
<td>0,991</td>
<td>C19–C20</td>
<td>1,40(2)</td>
<td>C33–H33A</td>
<td>0,98</td>
</tr>
<tr>
<td>C8–C9</td>
<td>1,51(1)</td>
<td>C20–H20</td>
<td>0,95</td>
<td>C33–H33B</td>
<td>0,98</td>
</tr>
<tr>
<td>C9–H9A</td>
<td>0,99</td>
<td>C21–C22</td>
<td>1,49(2)</td>
<td>C33–H33C</td>
<td>0,98</td>
</tr>
</tbody>
</table>
Продовження додатку 135

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9–H9B</td>
<td>0,99</td>
<td>C21–C25</td>
<td>1,26(2)</td>
<td>N1–P1</td>
<td>1,588(7)</td>
</tr>
<tr>
<td>C9–C10</td>
<td>1,514(9)</td>
<td>C22–O3</td>
<td>1,19(2)</td>
<td>N2–P1</td>
<td>1,617(4)</td>
</tr>
<tr>
<td>C10–H10A</td>
<td>0,99</td>
<td>C22–O4</td>
<td>1,40(2)</td>
<td>O1–P1</td>
<td>1,485(5)</td>
</tr>
<tr>
<td>C10–H10B</td>
<td>0,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Додаток 136

Значення кутів між зв’язками в структурі сполуки 4.8

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1A–C1–H1B</td>
<td>108,3</td>
<td>C15–C16–H16</td>
<td>121</td>
</tr>
<tr>
<td>H1A–C1–C2</td>
<td>109,8</td>
<td>C15–C16–C17</td>
<td>119(2)</td>
</tr>
<tr>
<td>H1A–C1–N1</td>
<td>109,8</td>
<td>H16–C16–C17</td>
<td>120</td>
</tr>
<tr>
<td>H1B–C1–C2</td>
<td>109,8</td>
<td>C16–C17–H17</td>
<td>119</td>
</tr>
<tr>
<td>H1B–C1–N1</td>
<td>109,7</td>
<td>C16–C17–C18</td>
<td>123(1)</td>
</tr>
<tr>
<td>C2–C1–N1</td>
<td>109,4(6)</td>
<td>H17–C17–C18</td>
<td>119</td>
</tr>
<tr>
<td>C1–C2–H2A</td>
<td>109,5</td>
<td>C17–C18–C19</td>
<td>117(1)</td>
</tr>
<tr>
<td>C1–C2–H2B</td>
<td>109,4</td>
<td>C17–C18–C21</td>
<td>121(1)</td>
</tr>
<tr>
<td>C1–C2–C3</td>
<td>110,7(8)</td>
<td>C19–C18–C21</td>
<td>122(1)</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>108,1</td>
<td>C18–C19–H19</td>
<td>120</td>
</tr>
<tr>
<td>H2A–C2–C3</td>
<td>109,5</td>
<td>C18–C19–C20</td>
<td>120(1)</td>
</tr>
<tr>
<td>H2B–C2–C3</td>
<td>109,5</td>
<td>H19–C19–C20</td>
<td>120</td>
</tr>
<tr>
<td>C2–C3–H3A</td>
<td>109,8</td>
<td>C15–C20–C19</td>
<td>121(2)</td>
</tr>
<tr>
<td>C2–C3–H3B</td>
<td>109,8</td>
<td>C15–C20–H20</td>
<td>119</td>
</tr>
<tr>
<td>C2–C3–C4</td>
<td>109,3(8)</td>
<td>C19–C20–H20</td>
<td>120</td>
</tr>
<tr>
<td>H3A–C3–H3B</td>
<td>108</td>
<td>C18–C21–C22</td>
<td>114(1)</td>
</tr>
<tr>
<td>H3A–C3–C4</td>
<td>109,8</td>
<td>C18–C21–C25</td>
<td>129(1)</td>
</tr>
<tr>
<td>H3B–C3–C4</td>
<td>109,8</td>
<td>C22–C21–C25</td>
<td>117(1)</td>
</tr>
<tr>
<td>C3–C4–H4A</td>
<td>109,5</td>
<td>C21–C22–O3</td>
<td>128(1)</td>
</tr>
</tbody>
</table>
Продолжение приложения 136

<table>
<thead>
<tr>
<th>Угол</th>
<th>Значение, °</th>
<th>Угол</th>
<th>Значение, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3–C4–H4B</td>
<td>109,6</td>
<td>C21–C22–O4</td>
<td>115(1)</td>
</tr>
<tr>
<td>C3–C4–C5</td>
<td>110,7(8)</td>
<td>O3–C22–O4</td>
<td>117(1)</td>
</tr>
<tr>
<td>H4A–C4–H4B</td>
<td>108</td>
<td>C22–O4–C23</td>
<td>123(1)</td>
</tr>
<tr>
<td>H4A–C4–C5</td>
<td>109,5</td>
<td>O4–C23–C24</td>
<td>121(2)</td>
</tr>
<tr>
<td>H4B–C4–C5</td>
<td>109,4</td>
<td>O4–C23–C29</td>
<td>118(1)</td>
</tr>
<tr>
<td>C4–C5–H5A</td>
<td>109,5</td>
<td>C24–C23–C29</td>
<td>121(2)</td>
</tr>
<tr>
<td>C4–C5–H5B</td>
<td>109,5</td>
<td>C23–C24–C25</td>
<td>115(2)</td>
</tr>
<tr>
<td>C4–C5–N1</td>
<td>110,9(7)</td>
<td>C23–C24–C26</td>
<td>121(2)</td>
</tr>
<tr>
<td>H5A–C5–H5B</td>
<td>108</td>
<td>C25–C24–C26</td>
<td>123(2)</td>
</tr>
<tr>
<td>H5A–C5–N1</td>
<td>109,5</td>
<td>C21–C25–C24</td>
<td>127(2)</td>
</tr>
<tr>
<td>H5B–C5–N1</td>
<td>109,4</td>
<td>C21–C25–H25</td>
<td>116</td>
</tr>
<tr>
<td>H6A–C6–H6B</td>
<td>108,3</td>
<td>C24–C25–H25</td>
<td>116</td>
</tr>
<tr>
<td>H6A–C6–C7</td>
<td>109,8</td>
<td>C24–C26–H26</td>
<td>121</td>
</tr>
<tr>
<td>H6A–C6–N2</td>
<td>109,8</td>
<td>C24–C26–C27</td>
<td>118(2)</td>
</tr>
<tr>
<td>H6B–C6–C7</td>
<td>109,8</td>
<td>H26–C26–C27</td>
<td>121</td>
</tr>
<tr>
<td>H6B–C6–N2</td>
<td>109,7</td>
<td>C26–C27–H27</td>
<td>120</td>
</tr>
<tr>
<td>C7–C6–N2</td>
<td>109,3(6)</td>
<td>C26–C27–C28</td>
<td>120(2)</td>
</tr>
<tr>
<td>C6–C7–H7A</td>
<td>109,1</td>
<td>H27–C27–C28</td>
<td>120</td>
</tr>
<tr>
<td>C6–C7–H7B</td>
<td>109,1</td>
<td>C27–C28–C29</td>
<td>119(2)</td>
</tr>
<tr>
<td>C6–C7–C8</td>
<td>112,7(6)</td>
<td>C27–C28–N4</td>
<td>118(2)</td>
</tr>
<tr>
<td>H7A–C7–H7B</td>
<td>107,8</td>
<td>C29–C28–N4</td>
<td>123(2)</td>
</tr>
<tr>
<td>H7A–C7–C8</td>
<td>109</td>
<td>C23–C29–C28</td>
<td>120(2)</td>
</tr>
<tr>
<td>H7B–C7–C8</td>
<td>109</td>
<td>C23–C29–H29</td>
<td>120</td>
</tr>
<tr>
<td>C7–C8–H8A</td>
<td>110</td>
<td>C28–C29–H29</td>
<td>120</td>
</tr>
<tr>
<td>C7–C8–H8B</td>
<td>110</td>
<td>C28–N4–C30</td>
<td>117(3)</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>108,8(6)</td>
<td>C28–N4–C32</td>
<td>126(3)</td>
</tr>
<tr>
<td>H8A–C8–H8B</td>
<td>108,3</td>
<td>C30–N4–C32</td>
<td>117(2)</td>
</tr>
<tr>
<td>H8A–C8–C9</td>
<td>110</td>
<td>N4–C30–H30A</td>
<td>105</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H8B–C8–C9</td>
<td>109,9</td>
<td>N4–C30–H30B</td>
<td>105</td>
</tr>
<tr>
<td>C8–C9–H9A</td>
<td>109,4</td>
<td>N4–C30–C31</td>
<td>128(2)</td>
</tr>
<tr>
<td>C8–C9–H9B</td>
<td>109,4</td>
<td>H30A–C30–H30B</td>
<td>106</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>111,3(6)</td>
<td>H30A–C30–C31</td>
<td>105</td>
</tr>
<tr>
<td>H9A–C9–H9B</td>
<td>108</td>
<td>H30B–C30–C31</td>
<td>105</td>
</tr>
<tr>
<td>H9A–C9–C10</td>
<td>109,3</td>
<td>C30–C31–H31A</td>
<td>109</td>
</tr>
<tr>
<td>H9B–C9–C10</td>
<td>109,4</td>
<td>C30–C31–H31B</td>
<td>110</td>
</tr>
<tr>
<td>C9–C10–H10A</td>
<td>109,9</td>
<td>C30–C31–H31C</td>
<td>109</td>
</tr>
<tr>
<td>C9–C10–H10B</td>
<td>109,9</td>
<td>H31A–C31–H31B</td>
<td>110</td>
</tr>
<tr>
<td>H10A–C10–H10B</td>
<td>108,2</td>
<td>H31B–C31–H31C</td>
<td>110</td>
</tr>
<tr>
<td>H10A–C10–N2</td>
<td>109,9</td>
<td>N4–C31–H32A</td>
<td>105</td>
</tr>
<tr>
<td>H10B–C10–N2</td>
<td>109,9</td>
<td>N4–C32–H32B</td>
<td>106</td>
</tr>
<tr>
<td>P1–C11–S1</td>
<td>121,6(4)</td>
<td>N4–C32–C33</td>
<td>126(2)</td>
</tr>
<tr>
<td>P1–C11–S2</td>
<td>109,1(4)</td>
<td>H32A–C32–H32B</td>
<td>106</td>
</tr>
<tr>
<td>S1–C11–S2</td>
<td>129,2(4)</td>
<td>H32A–C32–C33</td>
<td>106</td>
</tr>
<tr>
<td>H12–C12–C13</td>
<td>109,9</td>
<td>H32B–C32–C33</td>
<td>106</td>
</tr>
<tr>
<td>H12–C12–C14</td>
<td>110</td>
<td>C32–C33–H33A</td>
<td>109</td>
</tr>
<tr>
<td>H12–C12–S2</td>
<td>110</td>
<td>C32–C33–H33B</td>
<td>109</td>
</tr>
<tr>
<td>C13–C12–C14</td>
<td>111,5(7)</td>
<td>C32–C33–H33C</td>
<td>110</td>
</tr>
<tr>
<td>C13–C12–S2</td>
<td>109,3(5)</td>
<td>H33A–C33–H33B</td>
<td>109</td>
</tr>
<tr>
<td>C14–C12–S2</td>
<td>106,3(5)</td>
<td>H33A–C33–H33C</td>
<td>110</td>
</tr>
<tr>
<td>C12–C13–H13A</td>
<td>109,4</td>
<td>H33B–C33–H33C</td>
<td>110</td>
</tr>
<tr>
<td>C12–C13–H13B</td>
<td>109,5</td>
<td>C1–N1–C5</td>
<td>110,3(6)</td>
</tr>
<tr>
<td>C12–C13–H13C</td>
<td>109,5</td>
<td>C1–N1–P1</td>
<td>121,1(5)</td>
</tr>
<tr>
<td>H13A–C13–H13B</td>
<td>109,6</td>
<td>C5–N1–P1</td>
<td>126,3(5)</td>
</tr>
<tr>
<td>H13A–C13–H13C</td>
<td>109,5</td>
<td>C6–N2–C10</td>
<td>109,9(5)</td>
</tr>
<tr>
<td>H13B–C13–H13C</td>
<td>109,4</td>
<td>C6–N2–P1</td>
<td>120,8(4)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C12–C14–N3</td>
<td>112,9(7)</td>
<td>C10–N2–P1</td>
<td>121,0(4)</td>
</tr>
<tr>
<td>C12–C14–O2</td>
<td>120,8(7)</td>
<td>C11–P1–N1</td>
<td>108,7(3)</td>
</tr>
<tr>
<td>N3–C14–O2</td>
<td>126,2(8)</td>
<td>C11–P1–N2</td>
<td>103,5(3)</td>
</tr>
<tr>
<td>C14–N3–C15</td>
<td>126(1)</td>
<td>C11–P1–O1</td>
<td>107,2(3)</td>
</tr>
<tr>
<td>C14–N3–H3</td>
<td>120(4)</td>
<td>N1–P1–N2</td>
<td>106,3(3)</td>
</tr>
<tr>
<td>C15–N3–H3</td>
<td>111(4)</td>
<td>N1–P1–O1</td>
<td>111,4(3)</td>
</tr>
<tr>
<td>N3–C15–C16</td>
<td>120(2)</td>
<td>N2–P1–O1</td>
<td>119,1(3)</td>
</tr>
<tr>
<td>N3–C15–C20</td>
<td>120(2)</td>
<td>C11–S2–C12</td>
<td>102,8(4)</td>
</tr>
<tr>
<td>C16–C15–C20</td>
<td>120(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Додаток 137. 1H ЯМР спектр сполуки 4.11

Додаток 138. 13C{1H} ЯМР спектр сполуки 4.11
Додаток 139. 31P ЯМР спектр сполуки 4.11

Додаток 140. 1H ЯМР спектр сполуки 4.12
Додаток 141. 13C{1H} ЯМР спектр сполуки 4.12

Додаток 142. 31P ЯМР спектр сполуки 4.12
Результати РСД сполуки 4.11

<table>
<thead>
<tr>
<th>Прилад</th>
<th>Bruker Kappa APEX II Quazar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молекулярна формула</td>
<td>C_{20}H_{23}N_{2}O_{5}P</td>
</tr>
<tr>
<td>Молекулярна маса, M_r</td>
<td>402,37</td>
</tr>
<tr>
<td>Температура</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Радіація</td>
<td>0,71073 Å (MoKα)</td>
</tr>
<tr>
<td>Сингонія</td>
<td>Триклинна</td>
</tr>
<tr>
<td>Просторова група</td>
<td>P̅̅̅̅</td>
</tr>
<tr>
<td>a</td>
<td>7,4475(15) Å</td>
</tr>
<tr>
<td>b</td>
<td>16,234(3) Å</td>
</tr>
<tr>
<td>c</td>
<td>17,021(4) Å</td>
</tr>
<tr>
<td>$α$</td>
<td>103,808(7) °</td>
</tr>
<tr>
<td>$β$</td>
<td>101,286(8) °</td>
</tr>
<tr>
<td>$γ$</td>
<td>95,511(8) °</td>
</tr>
<tr>
<td>Об'єм елементарної комірки, V</td>
<td>1937,6(7) Å³</td>
</tr>
<tr>
<td>Число молекул в комірці, Z</td>
<td>4</td>
</tr>
<tr>
<td>Густина, $ρ$</td>
<td>1,379 г/см³</td>
</tr>
<tr>
<td>Коефіцієнт абсорбції, $μ$</td>
<td>0,177 мм⁻¹</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>848</td>
</tr>
<tr>
<td>Розміри кристалу</td>
<td>0,18x0,08x0,06 мм</td>
</tr>
<tr>
<td>Вигляд кристалу</td>
<td>Червона пластинка</td>
</tr>
<tr>
<td>Межі кута $Θ$</td>
<td>1,26–27,1 °</td>
</tr>
<tr>
<td>Межі індексів</td>
<td>$-9 ≤ h ≤ 9; -20 ≤ k ≤ 20; -21 ≤ l ≤ 21$</td>
</tr>
<tr>
<td>Зібрані відображення/унікальні</td>
<td>29845/8453</td>
</tr>
<tr>
<td>Дані/ступені обмеження/параметри</td>
<td>8453/41/528</td>
</tr>
<tr>
<td>Коефіцієнт відповідності, F^2</td>
<td>1,084</td>
</tr>
<tr>
<td>Кінцеві R індекси [$I>2σ(I)$]</td>
<td>$R = 0,0824; wR = 0,2371$</td>
</tr>
<tr>
<td>R індекси для всіх даних</td>
<td>$R = 0,151; wR = 0,3093$</td>
</tr>
<tr>
<td>Дифракційні екстремуми</td>
<td>0,89 та -0,856 еÅ⁻³</td>
</tr>
</tbody>
</table>
Значення довжин зв’язків у структурі сполуки 4.11

<table>
<thead>
<tr>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
<th>Зв’язок</th>
<th>Довжина, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–H1A</td>
<td>0,981</td>
<td>C6–C7</td>
<td>1,420(7)</td>
<td>C16–C17</td>
<td>1,367(6)</td>
</tr>
<tr>
<td>C1–H1B</td>
<td>0,98</td>
<td>C7–C8</td>
<td>1,415(5)</td>
<td>C16–N2</td>
<td>1,463(6)</td>
</tr>
<tr>
<td>C1–H1C</td>
<td>0,98</td>
<td>C7–N1</td>
<td>1,369(5)</td>
<td>C17–H17</td>
<td>0,95</td>
</tr>
<tr>
<td>C1–C2</td>
<td>1,508(7)</td>
<td>C8–H8</td>
<td>0,949</td>
<td>C17–C18</td>
<td>1,384(7)</td>
</tr>
<tr>
<td>C2–H2A</td>
<td>0,99</td>
<td>C8–C9</td>
<td>1,362(5)</td>
<td>C18–H18</td>
<td>0,95</td>
</tr>
<tr>
<td>C2–H2B</td>
<td>0,99</td>
<td>C9–H9</td>
<td>0,95</td>
<td>C19–H19A</td>
<td>0,991</td>
</tr>
<tr>
<td>C2–N1</td>
<td>1,467(5)</td>
<td>C9–C10</td>
<td>1,407(6)</td>
<td>C19–H19B</td>
<td>0,99</td>
</tr>
<tr>
<td>C3–H3A</td>
<td>0,98</td>
<td>C10–C11</td>
<td>1,438(5)</td>
<td>C19–C20</td>
<td>1,40(1)</td>
</tr>
<tr>
<td>C3–H3B</td>
<td>0,981</td>
<td>C11–H11</td>
<td>0,95</td>
<td>C19–O3</td>
<td>1,430(6)</td>
</tr>
<tr>
<td>C3–H3C</td>
<td>0,98</td>
<td>C11–C12</td>
<td>1,365(7)</td>
<td>C20–H20A</td>
<td>0,98</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1,529(9)</td>
<td>C12–C13</td>
<td>1,480(5)</td>
<td>C20–H20B</td>
<td>0,981</td>
</tr>
<tr>
<td>C4–H4A</td>
<td>0,99</td>
<td>C12–P1</td>
<td>1,769(4)</td>
<td>C20–H20C</td>
<td>0,979</td>
</tr>
<tr>
<td>C4–H4B</td>
<td>0,991</td>
<td>C13–C14</td>
<td>1,397(6)</td>
<td>N2–O4</td>
<td>1,229(7)</td>
</tr>
<tr>
<td>C4–N1</td>
<td>1,452(6)</td>
<td>C13–C18</td>
<td>1,395(7)</td>
<td>N2–O5</td>
<td>1,217(5)</td>
</tr>
<tr>
<td>C5–C6</td>
<td>1,361(5)</td>
<td>C14–H14</td>
<td>0,95</td>
<td>O1–P1</td>
<td>1,598(3)</td>
</tr>
<tr>
<td>C5–C10</td>
<td>1,399(4)</td>
<td>C14–C15</td>
<td>1,378(7)</td>
<td>O2–P1</td>
<td>1,440(4)</td>
</tr>
<tr>
<td>C5–O1</td>
<td>1,395(5)</td>
<td>C15–H15</td>
<td>0,95</td>
<td>O3–P1</td>
<td>1,621(4)</td>
</tr>
<tr>
<td>C6–H6</td>
<td>0,95</td>
<td>C15–C16</td>
<td>1,388(7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значення кутів між зв’язками в структурі сполуки 4.11

<table>
<thead>
<tr>
<th>Кут</th>
<th>Значення, °</th>
<th>Кут</th>
<th>Значення, °</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1A–C1–H1B</td>
<td>109,6</td>
<td>C11–C12–P1</td>
<td>115,1(3)</td>
</tr>
<tr>
<td>H1A–C1–H1C</td>
<td>109,4</td>
<td>C13–C12–P1</td>
<td>121,3(3)</td>
</tr>
<tr>
<td>H1A–C1–C2</td>
<td>109,4</td>
<td>C12–C13–C14</td>
<td>120,9(4)</td>
</tr>
<tr>
<td>H1B–C1–H1C</td>
<td>109,6</td>
<td>C12–C13–C18</td>
<td>121,5(4)</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>H1B–C1–C2</td>
<td>109,5</td>
<td>C14–C13–C18</td>
<td>117,6(4)</td>
</tr>
<tr>
<td>H1C–C1–C2</td>
<td>109,4</td>
<td>C13–C14–H14</td>
<td>119</td>
</tr>
<tr>
<td>C1–C2–H2A</td>
<td>109</td>
<td>C13–C14–C15</td>
<td>122,0(5)</td>
</tr>
<tr>
<td>C1–C2–H2B</td>
<td>109</td>
<td>H14–C14–C15</td>
<td>119</td>
</tr>
<tr>
<td>C1–C2–N1</td>
<td>113,1(4)</td>
<td>C14–C15–H15</td>
<td>121</td>
</tr>
<tr>
<td>H2A–C2–H2B</td>
<td>107,8</td>
<td>C14–C15–C16</td>
<td>118,2(5)</td>
</tr>
<tr>
<td>H2A–C2–N1</td>
<td>108,9</td>
<td>H15–C15–C16</td>
<td>120,9</td>
</tr>
<tr>
<td>H2B–C2–N1</td>
<td>109</td>
<td>C15–C16–C17</td>
<td>121,7(5)</td>
</tr>
<tr>
<td>H3A–C3–H3B</td>
<td>109,4</td>
<td>C15–C16–N2</td>
<td>118,0(4)</td>
</tr>
<tr>
<td>H3A–C3–H3C</td>
<td>109,4</td>
<td>C17–C16–N2</td>
<td>120,2(4)</td>
</tr>
<tr>
<td>H3A–C3–C4</td>
<td>109,5</td>
<td>C16–C17–H17</td>
<td>120,4</td>
</tr>
<tr>
<td>H3B–C3–H3C</td>
<td>109,5</td>
<td>C16–C17–C18</td>
<td>119,3(5)</td>
</tr>
<tr>
<td>H3B–C3–C4</td>
<td>109,5</td>
<td>H17–C17–C18</td>
<td>120,3</td>
</tr>
<tr>
<td>H3C–C3–C4</td>
<td>109,5</td>
<td>C13–C18–C17</td>
<td>121,2(5)</td>
</tr>
<tr>
<td>C3–C4–H4A</td>
<td>109,1</td>
<td>C13–C18–H18</td>
<td>119,4</td>
</tr>
<tr>
<td>C3–C4–H4B</td>
<td>109,1</td>
<td>C17–C18–H18</td>
<td>119,4</td>
</tr>
<tr>
<td>C3–C4–N1</td>
<td>112,5(4)</td>
<td>H19A–C19–H19B</td>
<td>107,9</td>
</tr>
<tr>
<td>H4A–C4–H4B</td>
<td>107,8</td>
<td>H19A–C19–C20</td>
<td>109,2</td>
</tr>
<tr>
<td>H4A–C4–N1</td>
<td>109,1</td>
<td>H19A–C19–O3</td>
<td>109,2</td>
</tr>
<tr>
<td>H4B–C4–N1</td>
<td>109,2</td>
<td>H19B–C19–C20</td>
<td>109,3</td>
</tr>
<tr>
<td>C6–C5–C10</td>
<td>124,3(4)</td>
<td>H19B–C19–O3</td>
<td>109,3</td>
</tr>
<tr>
<td>C6–C5–O1</td>
<td>116,6(3)</td>
<td>C20–C19–O3</td>
<td>111,9(6)</td>
</tr>
<tr>
<td>C10–C5–O1</td>
<td>119,0(3)</td>
<td>C19–C20–H20A</td>
<td>109,5</td>
</tr>
<tr>
<td>C5–C6–H6</td>
<td>120,3</td>
<td>C19–C20–H20B</td>
<td>109,4</td>
</tr>
<tr>
<td>C5–C6–C7</td>
<td>119,5(4)</td>
<td>C19–C20–H20C</td>
<td>109,5</td>
</tr>
<tr>
<td>H6–C6–C7</td>
<td>120,2</td>
<td>H20A–C20–H20B</td>
<td>109,5</td>
</tr>
<tr>
<td>C6–C7–C8</td>
<td>117,1(4)</td>
<td>H20A–C20–H20C</td>
<td>109,4</td>
</tr>
<tr>
<td>C6–C7–N1</td>
<td>120,6(4)</td>
<td>H20B–C20–H20C</td>
<td>109,5</td>
</tr>
<tr>
<td>Кут</td>
<td>Значення, °</td>
<td>Кут</td>
<td>Значення, °</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C8–C7–N1</td>
<td>122,3(4)</td>
<td>C2–N1–C4</td>
<td>115,7(4)</td>
</tr>
<tr>
<td>C7–C8–H8</td>
<td>119,2</td>
<td>C2–N1–C7</td>
<td>122,0(3)</td>
</tr>
<tr>
<td>C7–C8–C9</td>
<td>121,6(4)</td>
<td>C4–N1–C7</td>
<td>122,3(4)</td>
</tr>
<tr>
<td>H8–C8–C9</td>
<td>119,2</td>
<td>C16–N2–O4</td>
<td>116,9(4)</td>
</tr>
<tr>
<td>C8–C9–H9</td>
<td>119</td>
<td>C16–N2–O5</td>
<td>119,4(4)</td>
</tr>
<tr>
<td>C8–C9–C10</td>
<td>122,0(4)</td>
<td>O4–N2–O5</td>
<td>123,6(4)</td>
</tr>
<tr>
<td>H9–C9–C10</td>
<td>119</td>
<td>C5–O1–P1</td>
<td>123,9(2)</td>
</tr>
<tr>
<td>C5–C10–C9</td>
<td>115,5(3)</td>
<td>C19–O3–P1</td>
<td>120,2(3)</td>
</tr>
<tr>
<td>C5–C10–C11</td>
<td>122,1(3)</td>
<td>C12–P1–O1</td>
<td>105,7(2)</td>
</tr>
<tr>
<td>C9–C10–C11</td>
<td>122,4(4)</td>
<td>C12–P1–O2</td>
<td>120,1(2)</td>
</tr>
<tr>
<td>C10–C11–H11</td>
<td>116,5</td>
<td>C12–P1–O3</td>
<td>101,2(2)</td>
</tr>
<tr>
<td>C10–C11–C12</td>
<td>127,0(4)</td>
<td>O1–P1–O2</td>
<td>110,3(2)</td>
</tr>
<tr>
<td>H11–C11–C12</td>
<td>116,6</td>
<td>O1–P1–O3</td>
<td>104,0(2)</td>
</tr>
<tr>
<td>C11–C12–C13</td>
<td>123,5(4)</td>
<td>O2–P1–O3</td>
<td>114,1(2)</td>
</tr>
</tbody>
</table>